

Jonathan Aumont
IRAP - Toulouse, France J.-Ph. Bernard (PI), A. Mangilli, A. Hughes, G. Foënard, I. Ristorcelli, G. De Gasperis, H. Roussel, on behalf of the PILOT Collaboration

PILOT

1.2 THz far-infrared polarization

 experiment\star Reveal the structure of the magnetic field in our Galaxy and nearby galaxies
\star Characterize the geometric and magnetic properties of the dust grains
\star Understand polarized foregrounds
\star Complete the Planck observations at a higher frequency where the dust polarization has never been observed over large sky regions

PILOT - Instrument

^ Multiplexed bolometer arrays with a total of 2048 detectors at $240 \mu \mathrm{~m}(1249 \mathrm{GHz}), 2^{\prime}$ resolution
\star Observations at more than 2 HWP angles to reconstruct the Stokes parameters I, Q, U
\star Detectors cooled down to 0.3 K through closed-cycle ${ }^{3}$ He fridge
\star NEP $\sim 4 \times 10^{-16} \mathrm{~W} / \mathrm{Hz}^{1 / 2}$
\star Control of systematics and detector response at 1% level

PLOT - 2nd fight

PILOT - $2^{\text {nd }}$ flight

April 16th, 2017 from Alice Springs, Australia

* Total flight time: 33.5 h
* Scientific data: 23.8 h
\star Ceiling altitude: $32-40 \mathrm{Km}$

Note: most of these sources are not observable in balloon from South Pole (e.g. BLASTPol, SPIDER)

PILOT - Scanning strategy

PILOT - In-flight performances

* In-flight good optical quality and nominal resolution

P|LOT - In-flight performances

* In-flight good optical quality and nominal resolution
\star In-flight background has a similar shape but is a factor ~ 2 stronger than ground measurements. Polarized at 4-10 \% level
\star Variation of the detector responses due to polarized background \& atmosphere variations. Modelled and corrected to better than 2%

PILOT - In-flight performances

\star In-flight good optical quality and nominal resolution

Jupiter
\star In-flight background has a similar shape but is a factor ~ 2 stronger than ground measurements. Polarized at 4-10 \% level
\star Variation of the detector responses due to polarized background \& atmosphere variations. Modelled and corrected to better than 2%
\star Pointing offset varies during flight. Pointing model constructed from elevation + temperatures and Herschel comparison, better than 1^{\prime}
\star Spurious polarization measured on Jupiter of ~ 3%

PILOT - In-flight performances
\star In-flight good optical quality and nominal resolution
\star In-flight background has a similar shape but is a factor ~ 2 stronger than ground measurements. Polarized at 4-10 \% level
\star Variation of the detector responses due to polarized background \& atmosphere variations. Modelled and corrected to better than 2%
\star Pointing offset varies during flight. Pointing model constructed from elevation + temperatures and Herschel comparison, better than 1'
\star Spurious polarization measured on Jupiter of ~ 3 \%
\star In-flight white noise levels as expected; noise stability over the whole flight

+ Significant improvements in ongoing analyses

Orion

contour = Herschel

P|LOT - Preliminary polarization maps

\star Stokes parameters I, Q and U in the L0 Galactic plane region \star Strong signal but low polarization fraction

P|LOT - Comparison to Planck

$\mathrm{L} 0\left[\mathrm{MJy} \cdot \mathrm{sr}^{-1}\right]$

$$
\psi=\frac{1}{2} \cdot \operatorname{atan}\left(\frac{U}{Q}\right)
$$

PILOT - Comparison to Planck

$$
\psi=\frac{1}{2} \cdot \operatorname{atan}\left(\frac{U}{Q}\right)
$$

PILOT - Comparison to Planck

$$
\psi=\frac{1}{2} \cdot \operatorname{atan}\left(\frac{U}{Q}\right)
$$

PILOT - Direction of the magnetic field

PILOT - "BICE" region

PILOT - "BICEP" region

$\star 4.8 \mathrm{~h}$ of data during flight2

* BICEP field observed with 4 tiles, each of them being observed at least twice with 2 different HWP positions
\star Goal signal to noise ratio of ~ 20 on the polarized intensity integrated over the whole field
\star Unique data for constraining the SED or for correlation analyses in CMB observations

PILOT - Legacy

SPICA-PoL

* COPILOT: modification of PILOT will allow very accurate measurements of C+ (158 $\mu \mathrm{m})$ total intensity. Dark molecular gas distribution in solar neighborhood, nearby galaxies. CNES Phase A.
* IDS (Inflation and Dust Surveyor): CMB B-modes + dust, to be submitted again to NASA. Contribution to provide PILOT attitude control + internal calibration source
^ SPICA-PoL: polarized instrument on SPICA. Design and science case strongly inspired from PILOT. Accepted in pre-phaseA/0.
* BOOST proposal (IRAP) to lower detector temperature to 150 mK . Increase in sensitivity by 2.7 for PILOT, up to 14 for COPILOT

PILOT - Summary

\star Operational and instrumental success of the PILOT two flights
\star Unique experiment: observation of the dust polarization at 1.2 THz over large regions of the sky relevant for cosmology
\star PILOT legacy for future instruments
\star Data analysis in progress. No showstopper for the moment but we are a small team!

- BACKUP -

P|LOT - Improvements after 1st flight

+ arrays \#1 and \#3 were repaired
* ground tests: array \#3 ok, arrays \#1 and \#5 not working in flight: arrays \#1, \#3 and \#5 not working: -17\%
+ autonomy tests at 300 mK accomplished
\star detectors were operated 20 mK lower than flight\#1 (305 mK): +26\%
* in-flight autonomy was longer than the long flight (>33.5 hr)
+ Field stop size increased to avoid edge effects in polarization
\star polarization now ok everywhere: gain of 0.6 arrays: $+10 \%$
+ Longer flight (flight\#1: 14.8hr, flight\#2: 23.8 hr): +60\%
+ Front baffle thermal insulation was re-designed
* no deterioration observed in flight. No sign of external straylight.
+ More efficient observing strategy implemented
\star scans at varying elevation (better control of response variations + de-stripping)
* region of interest mapping (saves 20\% of of target time)
= Total: $+100 \%$
* important qualitative improvements: less straylight, more scan directions more HWP positions, more strong pointing sources

PILOT - "BICE" region

2.0

