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Cosmic Microwave Background Anisotropies

Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction 

• tiny variations of the CMB temperature ΔT/T ~ 10-5



• Standard 6 parameter concordance cosmology with parameters 
known to percent level precision 

• Gaussian-distributed adiabatic fluctuations with nearly scale-
invariant power spectrum over a wide range of scales 

• cold dark matter (“CDM”) 

• accelerated expansion today (“Λ”) 

• Standard BBN scenario  → Neff and Yp 

• Standard ionization history  → Ne(z)

 CMB anisotropies (with SN, LSS, etc...) clearly 
taught us a lot about the Universe we live in!

Planck Collaboration: Cosmological parameters

Table 4. Parameter 68 % confidence limits for the base ⇤CDM model from Planck CMB power spectra, in combination with
lensing reconstruction (“lensing”) and external data (“ext,” BAO+JLA+H0). Nuisance parameters are not listed for brevity (they
can be found in the Planck Legacy Archive tables), but the last three parameters give a summary measure of the total foreground
amplitude (in µK2) at ` = 2000 for the three high-` temperature spectra used by the likelihood. In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ⇡ 0.2453, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on ⌦bh2).

TT+lowP TT+lowP+lensing TT+lowP+lensing+ext TT,TE,EE+lowP TT,TE,EE+lowP+lensing TT,TE,EE+lowP+lensing+ext
Parameter 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits

⌦bh2 . . . . . . . . . . . 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02227 ± 0.00020 0.02225 ± 0.00016 0.02226 ± 0.00016 0.02230 ± 0.00014

⌦ch2 . . . . . . . . . . . 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1184 ± 0.0012 0.1198 ± 0.0015 0.1193 ± 0.0014 0.1188 ± 0.0010

100✓MC . . . . . . . . . 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04106 ± 0.00041 1.04077 ± 0.00032 1.04087 ± 0.00032 1.04093 ± 0.00030

⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.066 ± 0.016 0.067 ± 0.013 0.079 ± 0.017 0.063 ± 0.014 0.066 ± 0.012

ln(1010As) . . . . . . . . 3.089 ± 0.036 3.062 ± 0.029 3.064 ± 0.024 3.094 ± 0.034 3.059 ± 0.025 3.064 ± 0.023

ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9681 ± 0.0044 0.9645 ± 0.0049 0.9653 ± 0.0048 0.9667 ± 0.0040

H0 . . . . . . . . . . . . 67.31 ± 0.96 67.81 ± 0.92 67.90 ± 0.55 67.27 ± 0.66 67.51 ± 0.64 67.74 ± 0.46

⌦⇤ . . . . . . . . . . . . 0.685 ± 0.013 0.692 ± 0.012 0.6935 ± 0.0072 0.6844 ± 0.0091 0.6879 ± 0.0087 0.6911 ± 0.0062

⌦m . . . . . . . . . . . . 0.315 ± 0.013 0.308 ± 0.012 0.3065 ± 0.0072 0.3156 ± 0.0091 0.3121 ± 0.0087 0.3089 ± 0.0062

⌦mh2 . . . . . . . . . . 0.1426 ± 0.0020 0.1415 ± 0.0019 0.1413 ± 0.0011 0.1427 ± 0.0014 0.1422 ± 0.0013 0.14170 ± 0.00097

⌦mh3 . . . . . . . . . . 0.09597 ± 0.00045 0.09591 ± 0.00045 0.09593 ± 0.00045 0.09601 ± 0.00029 0.09596 ± 0.00030 0.09598 ± 0.00029

�8 . . . . . . . . . . . . 0.829 ± 0.014 0.8149 ± 0.0093 0.8154 ± 0.0090 0.831 ± 0.013 0.8150 ± 0.0087 0.8159 ± 0.0086

�8⌦
0.5
m . . . . . . . . . . 0.466 ± 0.013 0.4521 ± 0.0088 0.4514 ± 0.0066 0.4668 ± 0.0098 0.4553 ± 0.0068 0.4535 ± 0.0059

�8⌦
0.25
m . . . . . . . . . 0.621 ± 0.013 0.6069 ± 0.0076 0.6066 ± 0.0070 0.623 ± 0.011 0.6091 ± 0.0067 0.6083 ± 0.0066

zre . . . . . . . . . . . . 9.9+1.8
�1.6 8.8+1.7

�1.4 8.9+1.3
�1.2 10.0+1.7

�1.5 8.5+1.4
�1.2 8.8+1.2

�1.1

109As . . . . . . . . . . 2.198+0.076
�0.085 2.139 ± 0.063 2.143 ± 0.051 2.207 ± 0.074 2.130 ± 0.053 2.142 ± 0.049

109Ase�2⌧ . . . . . . . . 1.880 ± 0.014 1.874 ± 0.013 1.873 ± 0.011 1.882 ± 0.012 1.878 ± 0.011 1.876 ± 0.011

Age/Gyr . . . . . . . . 13.813 ± 0.038 13.799 ± 0.038 13.796 ± 0.029 13.813 ± 0.026 13.807 ± 0.026 13.799 ± 0.021

z⇤ . . . . . . . . . . . . 1090.09 ± 0.42 1089.94 ± 0.42 1089.90 ± 0.30 1090.06 ± 0.30 1090.00 ± 0.29 1089.90 ± 0.23

r⇤ . . . . . . . . . . . . 144.61 ± 0.49 144.89 ± 0.44 144.93 ± 0.30 144.57 ± 0.32 144.71 ± 0.31 144.81 ± 0.24

100✓⇤ . . . . . . . . . . 1.04105 ± 0.00046 1.04122 ± 0.00045 1.04126 ± 0.00041 1.04096 ± 0.00032 1.04106 ± 0.00031 1.04112 ± 0.00029

zdrag . . . . . . . . . . . 1059.57 ± 0.46 1059.57 ± 0.47 1059.60 ± 0.44 1059.65 ± 0.31 1059.62 ± 0.31 1059.68 ± 0.29

rdrag . . . . . . . . . . . 147.33 ± 0.49 147.60 ± 0.43 147.63 ± 0.32 147.27 ± 0.31 147.41 ± 0.30 147.50 ± 0.24

kD . . . . . . . . . . . . 0.14050 ± 0.00052 0.14024 ± 0.00047 0.14022 ± 0.00042 0.14059 ± 0.00032 0.14044 ± 0.00032 0.14038 ± 0.00029

zeq . . . . . . . . . . . . 3393 ± 49 3365 ± 44 3361 ± 27 3395 ± 33 3382 ± 32 3371 ± 23

keq . . . . . . . . . . . . 0.01035 ± 0.00015 0.01027 ± 0.00014 0.010258 ± 0.000083 0.01036 ± 0.00010 0.010322 ± 0.000096 0.010288 ± 0.000071

100✓s,eq . . . . . . . . . 0.4502 ± 0.0047 0.4529 ± 0.0044 0.4533 ± 0.0026 0.4499 ± 0.0032 0.4512 ± 0.0031 0.4523 ± 0.0023

f 143
2000 . . . . . . . . . . . 29.9 ± 2.9 30.4 ± 2.9 30.3 ± 2.8 29.5 ± 2.7 30.2 ± 2.7 30.0 ± 2.7

f 143⇥217
2000 . . . . . . . . . 32.4 ± 2.1 32.8 ± 2.1 32.7 ± 2.0 32.2 ± 1.9 32.8 ± 1.9 32.6 ± 1.9

f 217
2000 . . . . . . . . . . . 106.0 ± 2.0 106.3 ± 2.0 106.2 ± 2.0 105.8 ± 1.9 106.2 ± 1.9 106.1 ± 1.8

Table 5. Constraints on 1-parameter extensions to the base⇤CDM model for combinations of Planck power spectra, Planck lensing,
and external data (BAO+JLA+H0, denoted “ext”). Note that we quote 95 % limits here.

Parameter TT TT+lensing TT+lensing+ext TT,TE,EE TT,TE,EE+lensing TT,TE,EE+lensing+ext

⌦K . . . . . . . . . . . . . . �0.052+0.049
�0.055 �0.005+0.016

�0.017 �0.0001+0.0054
�0.0052 �0.040+0.038

�0.041 �0.004+0.015
�0.015 0.0008+0.0040

�0.0039
⌃m⌫ [eV] . . . . . . . . . . < 0.715 < 0.675 < 0.234 < 0.492 < 0.589 < 0.194
Ne↵ . . . . . . . . . . . . . . 3.13+0.64

�0.63 3.13+0.62
�0.61 3.15+0.41

�0.40 2.99+0.41
�0.39 2.94+0.38

�0.38 3.04+0.33
�0.33

YP . . . . . . . . . . . . . . . 0.252+0.041
�0.042 0.251+0.040

�0.039 0.251+0.035
�0.036 0.250+0.026

�0.027 0.247+0.026
�0.027 0.249+0.025

�0.026
dns/d ln k . . . . . . . . . . �0.008+0.016

�0.016 �0.003+0.015
�0.015 �0.003+0.015

�0.014 �0.006+0.014
�0.014 �0.002+0.013

�0.013 �0.002+0.013
�0.013

r0.002 . . . . . . . . . . . . . < 0.103 < 0.114 < 0.114 < 0.0987 < 0.112 < 0.113
w . . . . . . . . . . . . . . . �1.54+0.62

�0.50 �1.41+0.64
�0.56 �1.006+0.085

�0.091 �1.55+0.58
�0.48 �1.42+0.62

�0.56 �1.019+0.075
�0.080
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What are the main next targets for CMB anisotropies?

• Primary CMB temperature kind of finished... 

• E modes cosmic variance limited to high-l 
- CVL-limit on Thomson optical depth from large-scale E modes  
- refined CMB damping tail science from small-scale E modes 

- CMB lensing and de-lensing of primordial B-modes 

• primordial B modes  
- detection of r ~ 10-3 (energy scale of inflation)  

- upper limit on nT < O(0.1) as additional ‘proof of inflation’  

• CMB anomalies 
- stationarity of E and B-modes, lensing potential, etc across the sky 

• SZ cluster science 
- large cluster samples and (individual) high-res cluster measurements

A bright and exciting future with lots of activity!

➡CORE 
➡PIXIE 

➡Litebird 
➡CMB S4 
➡Simons 

Observatory 
➡PICO



Mather et al., 1994, ApJ, 420, 439 
Fixsen et al., 1996, ApJ, 473, 576  
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Average spectrum

CMB provides another independent piece of information!
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     CMB distortions probe the 
thermal history of the 
Universe at z < few x 106

pre- post-recombination epoch
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Measurements of CMB spectrum will open a new 
unexplored window to the early Universe!
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y-distortion 

µ-distortion 
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New hybrid era



Mather et al., 1994, ApJ, 420, 439 
Fixsen et al., 1996, ApJ, 473, 576  
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Only very small distortions of CMB spectrum are still allowed!

Average spectrum



Physical mechanisms that lead to spectral distortions
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• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011) 

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013) 

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013) 

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013) 

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009) 

•                                                                                   

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003) 

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999) 

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008) 

• Additional exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)
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Dramatic improvements in angular resolution and 
sensitivity over the past decades!

~ 7 degree 
beam

~ 0.3 degree 
beam

~ 0.08 degree 
beam

Measurements of the CMB energy spectrum on the other 
hand are still in the same state as some ~20+ years ago!



PIXIE: Primordial Inflation Explorer

• 400 spectral channel in the frequency 
range 30 GHz and 6THz (Δν ~ 15GHz) 

• about 1000 (!!!) times more sensitive 
than COBE/FIRAS  

• B-mode polarization from inflation          
(r ≈ 10-3) 

• improved limits on µ and y  
• was proposed 2011 & 2016 as NASA 

EX mission (i.e. cost ~ 200-250 M$)

Kogut et al, JCAP, 2011, arXiv:1105.2044

Average spectrum



NASA 30-yr Roadmap Study 
(published Dec 2013)

How does the Universe work? 

“Measure the spectrum of the 
CMB with precision several orders 
of magnitude higher than COBE 
FIRAS, from a moderate-scale 
mission or an instrument on CMB 
Polarization Surveyor.”

New mission concepts: 
PRISTINE (France) 
CMB-Bharat (India)

Decadal Survey 
White papers for Jan 2019



APSERa

Details in Rao et al., ArXiv:1501.07191



COSMO at Dome C 
COSmological Monopole Observer 

Elia Battistelli on behalf of Silvia Masi  
for the COSMO collaboration 

Taken from a talk by Elia Battistelli

Pagina 24 

•  Concordia station: 

•  75° 06’ S – 123° 21’ E 

•  3233 m a.s.l. 
•  <T>=-50°    ;    min(T)=-85° 

 
•  High altitude but fully logistical 

supported 

•  16 crew-members during winter. 
Maximum 80 people during summer 

•  Diffusely site tested at all 
wavelengths and continuous 
atmospheric monitoring 

•  Water Vapour Content ~75% of the 
time below 0.4mm PWV       
(Tremblin et al., 448 A65 A&A 2012) 

•  Circular and linear polarizations 
constrained to  

•  CP<0.19%;  
•  LP<0.11% (Battistelli et al., 

423 1293 MNRAS  2012) 

Elia Battistelli for the COSMO collaboration 

  
Concordia station at Dome-C



⇒ CMB Spectral Distortion 
Science Book, First Edition
Main initiators: Al Kogut, Subodh Patil, 
Emanuela Dimastrogiovanni & JC



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011) 

• Heating by decaying or annihilating relic particles                                                       
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• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013) 

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013) 

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009) 

•                                                                                   

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003) 

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999) 

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008) 

• Additional exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)
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Average CMB spectral distortions
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JC, 2016, MNRAS (ArXiv:1603.02496)

Reionization & 
structure formation

➡ Constrain total energy output

➡ Average temperature of the medium

➡ Constrain feedback mechanisms



Dissipation of small-scale acoustic modes

Planck collaboration: CMB power spectra, likelihoods, and parameters
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Figure 47. CMB-only power spectra measured by Planck (blue),
ACT (orange), and SPT (green). The best-fit PlanckTT+lowP
⇤CDM model is shown by the grey solid line. ACT data at
` > 1000 and SPT data at ` > 2000 are marginalized CMB
bandpowers from multi-frequency spectra presented in Das et al.
(2013) and George et al. (2014) as extracted in this work. Lower
multipole ACT (500 < ` < 1000) and SPT (650 < ` < 3000)
CMB power extracted by Calabrese et al. (2013) from multi-
frequency spectra presented in Das et al. (2013) and Story et al.
(2012) are also shown. Note that the binned values in the range
3000 < ` < 4000 appear higher than the unbinned best-fit line
because of the binning (this is numerically confirmed by the re-
sidual plot in Planck Collaboration XIII 2015, figure 9).

spectra are reported in Fig. 47. We also show ACT and SPT
bandpowers at lower multipoles as extracted by Calabrese et al.
(2013). This figure shows the state of the art of current CMB
observations, with Planck covering the low-to-high-multipole
range and ACT and SPT extending into the damping region. We
consider the CMB to be negligible at ` > 4000 and note that
these ACT and SPT bandpowers have an overall calibration un-
certainty (2 % for ACT and 1.2 % for SPT).

The inclusion of ACT and SPT improves the full-mission
Planck spectrum extraction presented in Sect. 5.5 only margin-
ally. The main contribution of ACT and SPT is to constrain
small components (e.g., the tSZ, kSZ, and tSZ⇥CIB) that are
not well determined by Planck alone. However, those compon-
ents are sub-dominant for Planck and are well described by the
prior based on the 2013 Planck+highL solutions imposed in the
Planck-alone analysis. The CIB amplitude estimate improves by
40 % when including ACT and SPT, but the CIB power is also
reasonably well constrained by Planck alone. The main Planck
contaminants are the Poisson sources, which are treated as in-
dependent and do not benefit from ACT and SPT. As a result,
the errors on the extracted Planck spectrum are only slightly re-
duced, with little additional cosmological information added by
including ACT and SPT for the baseline ⇤CDM model (see also
Planck Collaboration XIII 2015, section 4).

6. Conclusions

The Planck 2015 angular power spectra of the cosmic mi-
crowave background derived in this paper are displayed in

Fig. 48. These spectra in TT (top), T E (middle), and EE (bot-
tom) are all quite consistent with the best-fit base-⇤CDM model
obtained from TT data alone (red lines). The horizontal axis is
logarithmic at ` < 30, where the spectra are shown for individual
multipoles, and linear at ` � 30, where the data are binned. The
error bars correspond to the diagonal elements of the covariance
matrix. The lower panels display the residuals, the data being
presented with di↵erent vertical axes, a larger one at left for the
low-` part and a zoomed-in axis at right for the high-` part.

The 2015 Planck likelihood presented in this work is based
on more temperature data than in the 2013 release, and on
new polarization data. It benefits from several improvements
in the processing of the raw data, and in the modelling of
astrophysical foregrounds and instrumental noise. Apart from
a revision of the overall calibration of the maps, discussed
in Planck Collaboration I (2015), the most significant improve-
ments are in the likelihood procedures:

(i) a joint temperature-polarization pixel-based likelihood at
`  29, with more high-frequency information used for fore-
ground removal, and smaller sky masks (Sects. 2.1 and 2.2);

(ii) an improved Gaussian likelihood at ` � 30 that includes
a di↵erent strategy for estimating power spectra from data-
subset cross-correlations, using half-mission data instead of
detector sets (which allows us to reduce the e↵ect of cor-
related noise between detectors, see Sects. 3.2.1 and 3.4.3),
and better foreground templates, especially for Galactic dust
(Sect. 3.3.1) that allow us to mask a smaller fraction of the
sky (Sect. 3.2.2) and to retain large-angle temperature in-
formation from the 217 GHz map that was neglected in the
2013 release (Sect. 3.2.4).

We performed several consistency checks of the robustness
of our likelihood-making process, by introducing more or less
freedom and nuisance parameters in the modelling of fore-
grounds and instrumental noise, and by including di↵erent as-
sumptions about the relative calibration uncertainties across fre-
quency channels and about the beam window functions.

For temperature, the reconstructed CMB spectrum and er-
ror bars are remarkably insensitive to all these di↵erent as-
sumptions. Our final high-` temperature likelihood, referred to
as “PlanckTT” marginalizes over 15 nuisance parameters (12
modelling the foregrounds, and 3 for calibration uncertainties).
Additional nuisance parameters (in particular, those associated
with beam uncertainties) were found to have a negligible impact,
and can be kept fixed in the baseline likelihood.

For polarization, the situation is di↵erent. Variation of the as-
sumptions leads to scattered results, with larger deviations than
would be expected due to changes in the data subsets used, and
at a level that is significant compared to the statistical error bars.
This suggests that further systematic e↵ects need to be either
modelled or removed. In particular, our attempt to model cal-
ibration errors and temperature-to-polarization leakage suggests
that the T E and EE power spectra are a↵ected by systematics at
a level of roughly 1 µK2. Removal of polarization systematics at
this level of precision requires further work, beyond the scope of
this release. The 2015 high-` polarized likelihoods, referred to
as “PlikTE” and “PlikEE”, or “PlikTT,EE,TE” for the com-
bined version, ignore these corrections. They only include 12
additional nuisance parameters accounting for polarized fore-
grounds. Although these likelihoods are distributed in the Planck
Legacy Archive,15 we stick to the PlanckTT+lowP choice in the
baseline analysis of this paper and the companion papers such

15 http://pla.esac.esa.int/pla/

56



Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!

Dissipation of small-scale acoustic modes
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visible in the Wien tail

Blackbody spectra Photon mixing Blackbody + y-distortion

Tb = (T1 +T2)/2

⟹

Distortion due to mixing of blackbodies

JC, Hamann & Patil, 2015

Mixing is mediated by Thomson scattering ⇒ Silk damping
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Hu, Scott & Silk, 1994

• based on classical 
estimate for heating rate 

• Tightest / cleanest 
constraint at that point! 

• simple power-law 
spectrum assumed 

• µ~10-8 for scale-invariant 
power spectrum 

• nS ≲ 1.6



Average CMB spectral distortions
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Computed directly 
with CosmoTherm 
(with description of JC, Khatri 
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y = 3.63+0.17
�0.17 ⇥ 10�9

µ = 2.00+0.14
�0.13 ⇥ 10�8

Planck 2015 
TT,TE,EE + lowP

JC, 2016, MNRAS (ArXiv:1603.02496)

If we do not see this signal then ΛCDM is in trouble!



Distortions provide new power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1 

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1 

• complementary piece of information about early-universe physics

              

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Probe extra 
≃10 e-folds 
of inflation!



• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1 

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

rather model dependent

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

FIRAS 
(JC, Erickcek & 
Ben-Dayan, 2012)

y µ

• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1 

• complementary piece of information about early-universe physics

CMB et al.
PIXIE 
(Abitbol, JC, Hill and Johnson, 2017)

Distortions provide new power spectrum constraints!
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Rubino-Martin et al. 2006, 2008; Sunyaev & JC, 2009

Another way to do CMB-based cosmology! 
Direct probe of recombination physics!
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Average CMB spectral distortions
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Factor of > 10 
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JC, 2016, MNRAS (ArXiv:1603.02496)

APSERa



What can CMB spectral distortions teach us?

• Add a new dimension to CMB science 
- probe the thermal history at different stages of the Universe 

• Complementary and independent information! 
- cosmological parameters from the recombination radiation 

- new/additional test of large-scale CMB anomalies 

• Several guaranteed signals are expected 
- y-distortion from low redshifts 

- damping signal & recombination radiation 

• Test various inflation models 
- damping of the small-scale power spectrum  

• Discovery potential 
- decaying particles and other exotic sources of distortions

We should really make use of this information!

PIXIE/PRISTINE



• Pioneering work from the ground 
- Improved constraints on µ and y 

- Possible detection of average late-time y-distortion 

- Discovery potential (e.g., ARCADE excess, EDGES) 

➡  COSMO at Dome-C and APSERa

Steps forward on CMB spectral distortions

• Low-frequency foregrounds                                             

- One of the main problems for distortions (Abitbol, JC, Hill and Johnson, 2017) 
- Capitalize on existing experience (e.g., C-Bass, Quijote) 

- One of the important inputs for B-mode searches

• Advancing the frontier from space 
- Probe of inflation and early-Universe physics 
- Complementary science to B-modes + guaranteed signals 

- Absolutely calibrated multi-frequency maps incredibly valuable         
(e.g., calibration issues, foreground separation) 

➡  PRISTINE, PIXIE-prime, CMB-Bharat



What is PRISTINE?

Polarized Radiation Interferometer for Spectral 
disTorsions and INflation Exploration



MG15	-	Rome

Aims,	boundary	conditions	and	collaboration
• Measure	both	CMB	polarisation	and	distortions	
• From	design	of	COBE/FIRAS	and	PIXIE	optimise	and	adapt	the	

science	case	and	instrument	deign	for	a	small	mission	
– y-type	distortions	
– Do	from	space	what	can	only	be	done	from	space	
– Complementarity	with	other	missions	and	ground	based	projects	
– Do	not	have	the	ambition	of	a	definitive	CMB	mission

�6
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MG15	-	Rome

Instrument	Philosophy

�8

Optimised	imaging	polarised FT Spectro. based on	PIXIE	concept	
! Two telescopes of 36 cm each 
! Frequency range 90 to 2000 GHz  

! 2 THz decreases largely the noise contribution from dust and mitigates 
degeneracy with CIB, and correlation with synchrotron 

! 90 GHz improves spatial resolution and constraints size of optical 
elements 

! Spectral resolution of 5 GHz 
! Mitigates contamination from lines and optimises legacy ISM & galaxies 

! Spatial resolution 0.75	deg equivalent Gaussian  
! Array of 7 dual polarised pixels (x 2, one for each output port) 
! Sensitivity similar to PIXIE 
! Internal absolute photometric calibrator 
! Try to reduce risks and have high TRL 

! Slow spinning 

Courtesy: Bruno Maffei

Proposal to be submitted 
to ESA (F-class)
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MG15	-	Rome

Instrument	concept

�10Courtesy: Bruno Maffei



MG15	-	Rome �11

Instrument	
concept

Detector	array	at	~	100mK	
7	horn-coupled	dual-
polarisation	bolometers	on	
curved	focal	surface

G.	Savini	
JP	Maillard



MG15	-	Rome �12

Potential	internal	calibration	
mechanism

G.	Savini	
JP	Maillard



Science with PRISTINE

➡ Significant detection of y (>10 σ)

➡ Close to detecting  average rel. thSZ 

➡ Improved limit on µ

Spectral distortion forecasts by Max Abitbol:

B-mode forecasts by Mathieu Remazeilles and Josquin Errard:

➡ 20 σ detection of 𝜏 and E-mode reconstruction at 2 ≤ l ≤ 50

➡ 5 σ detection of r = 10-2

Additional science and Foregrounds

➡ Large-angle CIB and CO intensity mapping

➡ Absolutely calibrated maps of the sky at many frequencies

➡ Goldmine for foreground studies 

➡ Could be crucial for B-mode searches



Uniqueness of CMB Spectral Distortion Science

Guaranteed distortion 
signals in ΛCDM 

New tests of inflation 
and particle/dark 
matter physics 

Signals from the 
reionization and 
recombination eras 

Huge discovery 
potential 

Complementarity and 
synergy with CMB 
anisotropy studies

Chluba & Sunyaev, MNRAS, 419, 2012 
Chluba et al., MNRAS, 425, 2012 
Silk & Chluba, Science, 2014 
Chluba, MNRAS, 2016

PIXIE
APSERa
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