CMB foregrounds for B-mode studies

Tenerife, Spain, October 15-18, 2018

LiteBIRD

Masashi Hazumi

- 1) Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)
- 2) Kavli Institute for Mathematics and Physics of the Universe (Kavli IPMU), The University of Tokyo
- 3) Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA)
- 4) Graduate School for Advanced Studies (SOKENDAI)

for LiteBIRD Joint Study Group

LiteBIRD Joint Study Group

About 180 researchers from Japan, North America & Europe

Experience: CMB exp., X-ray satellites, other large proj. (HEP, ALMA etc.)

Y. Sekimoto^{14,37}, P. Ade², K. Arnold⁴⁹, J. Aumont¹², J. Austermann²⁹, C. Baccigalupi¹¹, A. Banday¹², R. Banerji⁵⁶, S. Basak^{7,11}, S. Beckman⁴⁹, M. Bersanelli⁴⁴, J. Borrill²⁰, F. Boulanger⁴, M.L. Brown⁵³, M. Bucher¹, E. Calabrese², F.J. Casas¹⁰, A. Challinor^{50,60,64}, Y. Chinone^{16,47}, F. Columbro⁴⁶, A. Cukierman^{47,36}, D. Curtis⁴⁷, P. de Bernardis⁴⁶, M. de Petris⁴⁶, M. Dobbs²³, T. Dotani^{14,37}, L. Duband³, JM. Duval³, A. Ducout¹⁶, K. Ebisawa¹⁴, T. Elleflot⁴⁹, H. Eriksen⁵⁶, J. Errard¹, R. Flauger⁴⁹, C. Franceschet⁵⁴, U. Fuskeland⁵⁶, K. Ganga¹, J.R. Gao³⁵, T. Ghigna^{16,57}, J. Grain⁹, A. Gruppuso⁶, N. Halverson⁵¹, P. Hargrave², T. Hasebe¹⁴, M. Hasegawa^{5,37}, M. Hattori⁴², M. Hazumi^{5,14,16,37}, S. Henrot-Versille¹⁹ C. Hill^{21,47}, Y. Hirota³⁸, E. Hivon⁶¹, D.T. Hoang^{1,63}, J. Hubmayr²⁹, K. Ichiki²⁴, H. Imada¹⁹, H. Ishino³⁰, G. Jaehnig⁵¹, H. Kanai⁵⁹, S. Kashima²⁵, K. Kataoka³⁰, N. Katayama¹⁶. T. Kawasaki¹⁷, R. Keskitalo^{20,48}, A. Kibayashi³⁰, T. Kikuchi¹⁴, K. Kimura³¹, T. Kisner^{20,48}, Y. Kobayashi³⁹, N. Kogiso³¹, K. Kohri⁵, E. Komatsu²², K. Komatsu³⁰, K. Konishi³⁹, N. Krachmalnicoff¹¹, C.L. Kuo^{34,36}, N. Kurinsky^{34,36}, A. Kushino¹⁸, L. Lamagna⁴⁶, A.T. Lee^{21,47}, E. Linder^{21,48}, B. Maffei⁹, M. Maki⁵, A. Mangilli¹², E. Martinez-Gonzalez¹⁰, S. Masi⁴⁶, T. Matsumura¹⁶, A. Mennella⁵⁴, Y. Minami⁵, K. Mistuda¹⁴, D. Molinari^{52,6} L. Montier¹², G. Morgante⁶, B. Mot¹², Y. Murata¹⁴, A. Murphy²⁸, M. Nagai²⁵, R. Nagata⁵, S. Nakamura⁵⁹, T. Namikawa²⁷, P. Natoli⁵², T. Nishibori¹⁵, H. Nishino⁵, C. O'Sullivan²⁸. H. Ochi⁵⁹, H. Ogawa³¹, H. Ogawa¹⁴, H. Ohsaki³⁸, I. Ohta⁵⁸, N. Okada³¹, G. Patanchon¹, F. Piacentini⁴⁶, G. Pisano², G. Polenta¹³, D. Poletti¹¹, G. Puglisi³⁶, C. Raum⁴⁷, S. Realini⁵⁴ M. Remazeilles⁵³, H. Sakurai³⁸, Y. Sakurai¹⁶, G. Savini⁴³, B. Sherwin^{50,65,21}, K. Shinozaki¹⁵, M. Shiraishi²⁶, G. Signorelli⁸, G. Smecher⁴¹, R. Stompor¹, H. Sugai¹⁶, S. Sugiyama³² A. Suzuki²¹, J. Suzuki⁵, R. Takaku^{14,40}, H. Takakura^{14,39}, S. Takakura¹⁶, E. Taylor⁴⁸, Y. Terao³⁸, K.L. Thompson^{34,36}, B. Thorne⁵⁷, M. Tomasi⁴⁴, H. Tomida¹⁴, N. Trappe²⁸, M. Tristram¹⁹, M. Tsuji²⁶, M. Tsujimoto¹⁴, S. Uozumi³⁰, S. Utsunomiya¹⁶, N. Vittorio⁴⁵, N. Watanabe¹⁷, I. Wehus⁵⁶, B. Westbrook⁴⁷, B. Winter⁶², R. Yamamoto¹⁴, N.Y. Yamasaki¹⁴, M. Yanagisawa³⁰, T. Yoshida¹⁴, J. Yumoto³⁸, M. Zannoni⁵⁵, A. Zonca³³,

European consortium leadership

- Spokesperson: Ludovic Montier (IRAP, France)...
- Deputy Spokesperson: Erminia Calabrese (Cardiff U. UK)
- Systems Engineer: Baptiste Mot (IRAP, France).....
- Steering Committee Chair: Nicola Vittorio (U. Rome Tor Vergata)...

- Germany: Eiichiro Komatsu (MPA) ...
- *Italy:* Nicola Vittorio (U. Rome Tor Vergata), Paolo de Bernardis (U. Rome La Sapienza).
- Netherlands: Jian-Rong Gao.....
- *Norway:* Ingunn Kathrine Wehus (U. Oslo)....
- *Spain:* Enrique Martinez-Gonzalez (IFCA)...
- UK: Erminia Calabrese (Cardiff U.), Giampaolo Pisano (Cardiff U)......

LiteBIRD project overview

- JAXA L-class mission candidate with a solid basis in Japan
 - JAXA prefers a focused mission even for L-class
 - Test of inflation is one of the most important objectives in JAXA roadmap
 - MEXT (funding agency) chose LiteBIRD as one of 10 flag-ship future large projects among all areas of research
- Phase-A1 concept development at ISAS/JAXA (Sep.2016 Aug. 2018) completed
 - The most advanced status among all CMB space mission proposals in the world
- Strong international contributions
 - US: Focal plane/cold readout technology development (NASA)
 - Canada: Science contribution studies and science maturity studies (CSA)
 - Europe:
 - Studies at Concurrent Design Facility (ESA) with the European consortium
 - Italy: Phase A commitment (ASI)
 - France: Phase A commitment (CNES)

Schedule after Phase-A1

- Final down selection in early 2019
 - -LiteBIRD or OKEANOS (solar-power sail), i.e. only two candidates remain
- Launch in 2027
- Observation in L2 for 3 years

Why measurements in space?

- Superb environment!
 - No statistical/systematic uncertainty due to atmosphere (cf. polarization due to icy clouds in POLARBEAR obs., S. Takakura et al. 2018)
 - No limitation for the choice of observing bands (except CO lines)
 - No ground pickup

Rule of thumb: 1,000 detectors in space ~ 100,000 detectors on ground

- Only way to access lowest multipoles w/ $\delta r \sim O(0.001)$
 - Both B-mode bumps need to be observed for the firm confirmation of cosmic inflation → We need measurements in space.

LiteBIRD full success

- 1. The mission shall measure the tensor-to-scalar ratio r with a total uncertainty of $\delta r < 1 \times 10^{-3}$. This value shall include contributions from instrument statistical noise fluctuations, instrumental systematics, residual foregrounds, lensing B-modes, and observer bias, and shall not rely on future external datasets.
- 2. The mission shall obtain full-sky CMB linear polarization maps for achieving >5 σ significance using data between ell =2 and ell =10, data between ell=11 and ell=200 separately, assuming r=0.01. We assume a fiducial optical depth of τ = 0.05 for this calculation.

Full Success (simplified version)

- $\delta r < 1 \times 10^{-3} \text{ (for r=0)}$
- 2 ≤ ℓ ≤ 200

LiteBIRD extra success

Improve $\sigma(r)$ with external observations

Topic	Method	Example Data	
Delensing	Large CMB telescope array	CMB-S4 data Namikawa and Nagata, JCAP 1409 (2014) 009	
	Cosmic infrared background	Herschel data Sherwin and Schmittfull, Phys. Rev. D 92, 043005 (201	
	Radio continuum survey	SKA data Namikawa, Yamauchi, Sherwin, Nagata, Phys. Rev. D 93, 043527 (2016)	
Foreground cleaning	Lower frequency survey	C-BASS, S-PASS, QUIJOTE etc. and their upgrades	

- Delensing improvement to $\sigma(r)$ can be factor ~ 2 or more.
 - e.g. ~6sigma observation in case of Starobinsky model
 - Need to make sure systematic uncertainties are under control

LiteBIRD science outcomes

Full success | System requirements from 1. only

- Extra success (see previous page)
- Characterization of B-mode (e.g scale-invariance, non-Gaussianity, and parity violation)
- Large-scale E mode and its implications for reionization history and the neutrino mass
- Birefringence
- Power spectrum features in polarization
- SZ effect (thermal and relativistic correction)
- Anomaly
- Cross-correlation science
- 10. Galactic science

3. - 10. almost guaranteed if full success is achieved.

Large-scale E-mode

A cosmic variance limited measurement of EE on large angular scales will be an important, and guaranteed, legacy for LiteBIRD!

Σm_v w/ improved τ

- $\sigma(\Sigma m_v) = 15 \text{ meV}$
- $\geq 3\sigma$ detection of minimum mass for normal hierarchy
- ≥5 σ detection of minimum mass for inverted hierarchy

Caveat:

No systematic error included yet.

Design drivers toward full success

$\delta r < 1 \times 10^{-3}$

Margin 0.00057

Statistical uncertainty < 0.00057

Systematic uncertainty

< 0.00057

Our simulations tell that both criteria are satisfied!

Statistical uncertainty includes

- foreground cleaning
- lensing B-mode
- 1/f noise
- → Broadband 34 448 GHz (15 bands)

Systematic uncertainty includes

- 1/f noise
- Polarization efficiency & knowledge
- Disturbance to instrument
- Off-boresight pick up
- Calibration accuracy
- → Polarization Modulation Unit (PMU)

LiteBIRD spacecraft

Scan strategy

Orbit: L2 Lissajous

of observations for each sky pixel

Sensitivity

- Good sensitivities under available focal planes
- Further optimization possible w/ minor design impact

Detector array sensitivity (NET_{arr})

 $NET_{arr} \rightarrow Sky sensitivity$

Frequency	NET _{CMB,Arr}	Sensitivity
[GHz]	$[\mu \mathbf{K} \cdot \sqrt{s}]$	$[\mu K - arcmin]$
40	16.76	34.99
50	10.04	20.96
60	8.67	18.09
68	5.37	11.21
78	4.57	9.54
89	3.97	8.29
100	3.39	6.88
119	2.49	5.19
140	2.27	4.75
166	2.85	5.96
195	2.86	5.97
235	3.13	6.52
280	3.73	7.79
337	4.22	8.82
402	7.40	15.44
-		(3yr obs)

(3yr obs.)

Foreground cleaning

100

50

10-3

$$\underline{\text{Methodology}}$$

$$\text{Synchrotron:}[Q_s, U_s](\hat{n}, \nu) = [Q_s, U_s](\hat{n}, \nu_*) \left(\frac{\nu}{\nu_*}\right)^{\beta_s(\hat{n}) + C_s(\hat{n}) \ln(\nu/\nu_*^C)}$$

AME is effectively absorbed by synchrotron curvature

Dust:
$$[Q_d, U_d](\hat{n}, v) = [Q_d, U_d](\hat{n}, v_*) \left(\frac{v}{v_*}\right)^{\beta_d(\hat{n}) - 2} \frac{B[v, T_d(\hat{n})]}{B[v_*, T_d(\hat{n})]}$$

(8 parameters in each sky region) x (12 x N_{side}^2)

= 6144 parameters w/ $N_{\text{side}} = 8$ to take spatial variations into account

Results*

"Multipatch technique" (extension of xForecast)

- $\sigma(r=0) = 0.0005$
- Negligibly small bias

Consistent results from COMMANDER!

10-5

10-4

r and $\sigma(r)$

10

10-4

10-2

^{*} Assumed time loss of ADR cycles. Detector config. slightly different from previous page.

LiteBIRD component tree

LFT optics

LiteBIRD

- Crossed Dragone
- Aperture diameter 400 mm
- Angular resolution 20 70 arcmin.
- Field of view 20 deg x 10 deg
- F#3.0 & crossed angle of 90 degree
- All 5K parts are made of Aluminum
- Less than 150 kg
- New mirror design (anamorphic aspherical surfaces) S. Kashima et al. 2018 Appl. Opt.

LFT polarization modulator

Continuously-rotating half-wave plate (HWP)

- Mitigation of 1/f noise
- Mitigation of differential systematics
- Baseline is to rotate HWP continuously throughout the mission

Bell-shaped anti-reflection on sapphire HWP

Superconducting magnetic rotator BBM developed in Phase A1.

Mechanical and thermal feasibilities are being evaluated.

[SPIE 10708-12] Y. Sakurai et al. "Design and development of a polarization modulator unit based on a continuous rotating half-wave plate for LiteBIRD" [SPIE 10708-142] K. Komatsu et al. "Prototype design and evaluation of the nine-layer achromatic half-wave plate for the LiteBIRD low frequency telescope"

HFT design status

Two concepts under study by the European consortium

Reflective solution

- Crossed Dragone telescope F/3.5
- Frequency coverage: 89 448 GHz
- Continuous rotating HWP mechanism
- Reflective Embedded Metal-mesh HWP tilted at 45°

Refractive solution

- Two telescopes F/2.2
 - MFT: 89 270 GHz
 - HFT: 238 448 GHz
- Silicon lenses
- Continuous rotating HWP mechanism
- Transmissive Metal-mesh HWP

Focal planes w/ TES bolometers

Divol Tono	Enganonari	Ema DW	M Di	IIC (DIA1: I)	LiteBIRD		
Pixel Type	Frequency	Frac BW	Num Pix	US team (PI Adrian Lee)			
	[GHz]			Berkeley, Colorado, LBNL, NIST, Stanford, UCSD			
LFT-1	40	0.30	32				
LFT-1	60	0.23	32	LFT f/3.0 design	ıslet		
LFT-1	78	0.23	32				
LFT-2	50	0.30	32	Si	nuous Antenna		
LFT-2	68	0.23	32	fo	r broadband		
LFT-2	89	0.23	32	E	ichroic pixels		
LFT-3	68	0.23	72	* ****** •••• ••• ••• ••• ••• ••• ••• •	cinoic pixeis		
LFT-3	89	0.23	72	\$\$\$\$\$\$ <u>****</u>			
LFT-3	119	0.30	72	888888	10 8		
LFT-4	78	0.23	72	420 mm			
LFT-4	100	0.23	72	Test pixel for			
LFT-4	140	0.30	72	space-optimized			
HFT-1	100	0.23	108	bolometer development			
HFT-1	140	0.30	108	HFT f/3.5 design	The state of the s		
HFT-1	195	0.30	108	pixel design			
HFT-2	119	0.30	108		2		
HFT-2	166	0.30	108				
HFT-2	235	0.30	108				
HFT-3	280	0.30	161	5/1 33333 333333 333333 333333			
HFT-3	402	0.23	161	Feferior India			
HFT-4	337	0.30	161	↓			
		:		Si platelet			
to	otal: 3,51	0 TESes	5	(reflective case) corrugated horn	OMT		
				Con ugaicu nom			

DfMUX readout

Agence spatiale

canadienne

Canadian Space

Agency

- Frequency Multiplexed Readout
 - USA: Cold components (SQUID)
 - Canada: warm electronics
- Based on system deployed for South Pole Telescope and POLARBEAR.

POLARBEAR/Simons Array: Commonalities w/ LiteBIRD

- → Talk by Davide Poleti (Monday)
- Multi-chroic Al-Mn TES w/ sinuous antenna
- DfMUX readout w/ DAN
- (Continuously-rotating HWP)

First receiver system "POLARBEAR-2" just shipped from KEK Japan to Chile!

Ground-based project carried out by CMB experimenters on LiteBIRD. 10 years of collaboration b/w Japan, US, Canada, Europe. Stepping-stone for LiteBIRD.

Cooling system and thermal design

- Based on SPICA design study
 - 1. Passive cooling with V-grooves
 - 2. Redundant for mechanical coolers (1.8KJT, 4.8KJT, 2ST)
 - 3. Sub-K cooler: CCDR or ADR

	4.8K JT	1.8K JT
cooling capacity @EOL	40 mW	10 mW
margin	10 mW	3 mW
conductive and radiative loads	12 mW	
HWP, subK coolers, focal plane	18 mW	
cold aperture stop and focal plane and suK coolers		7 mW

[SPIE 10698-219] T. Hasebe et al. "Thermal design utilizing radiative cooling for the payload module of LiteBIRD"

Sub-Kelvin cooler

Two technologies available in France

Hybrid Adiabatic Demagnetization Refrigerator (ADR)

- CEA-SBT
- Single shot Duty Cycle: ~80%
- TRL 6
- Heat lifts
 - 0.4µW @ 100 mK
 - 14µW @ 300 mK

Closed Cycle Dilution Refrigerator (CCDR)

- NEEL / IAS / CNES
- Continuous Duty Cycle: 100%
- TRL 4
- Heat lifts3µW @ 100 mK
 - 10µW @ 300 mK

End-to-end cooling chain verification

• In the framework of ESA Core Technology Program, Cryo-Chain CTP (CC-CTP) project has been promoted during 2016-2018, in the international collaboration led by CNES, with JAXA and CEA.

Thermal interface from 300K to 100mK/
50mK (end-to-end) has been demonstrated. Cryogenics (2018) for Athena, LiteBIRD and SPICA.

T.Prouve et al. ESCW (2018)

Credit: CEA

LiteBIRD basic parameters

Low Frequency Telescope (LFT)	High Frequency Telescope (HFT)				
34 ~ 161 GHz	89 ~ 448 GHz				
> 20 deg ×10 deg	> 20 deg ×10 deg				
400 mm	300 mm				
20 ~ 70 arcmin	10 ~ 40 arcmin				
88 rpm	170 rpm				
1248	2262				
$\delta r < 1 \times 10^{(-3)}$					
3 years					
L2 Lissajous, precession angle 45 deg, spin angle 50 deg (0.1 rpm)					
< 3 μK·arcmin					
< 3 arcmin					
bath temperature 100 mK					
NET ^P array = 1.7 μK√s@ 100 mK					
f_{knee} < 20 mHz					
7 GByte/day					
2.6 ton					
3.0 kW					
	34 ~ 161 GHz > 20 deg ×10 deg 400 mm 20 ~ 70 arcmin 88 rpm 1248 δr < 1 > 3 y L2 Lissajous, precession angle 4 < 3 μk < 3 a bath temper NET ^P array = 1. f_{knee} 7 GBs				

Systematics and calibration

- One of the largest study groups at LiteBIRD
- Systematic approach for systematic uncertainties
 - List systematic error items $\rightarrow \sim 10$ categories, ~ 70 items listed
 - Assign each item $\sigma(r)_{svs} < 5.7 \times 10^{-6}$ as the budget (1% of total budget for systematic error)
 - Derive a requirement for each item, define method (incl. calibration methods) and estimate $\sigma(r)_{sys}$
 - Assign special budget allocations for outstanding items

- Sum each contribution on map base to estimate total $\sigma(r)_{sys}$ (some studies even on TOD basis) to take positive correlations into account

- Iterate procedure
- Example: studies of systematic errors due to HWP imperfection
 - Mueller matrix from RCWA simulations of electromagnetic wave propagation through realistic HWP for different frequencies and incident angles
 - 4f component from M_{IQ} , $M_{IU} \sim 10^{-4}$ in the worst case
 - Obtain leakage maps and BB power to estimate $\sigma(r)_{sys}$

All known systematics will be mitigated enough!

Development model philosophy

- LFT demonstration model (DM):
 - PLM 5K (LFT only) with LF-focal plane at 0.1K
 - beam, spectral, polarization, multiple reflection at cryogenic temperature.

JAXA \phi6m space chamber

- PLM structure thermal model (STM):
 - 300K to 5K structures, mechanical coolers (incl. 0.1K), V-groove
 - Check mechanical and thermal interfaces
- PLM engineering model (EM):
 - Integration of PLM including HFT without SVM
 - Check PLM interfaces equivalent to FM
 - Noise and optical efficiency verification, EMC
- Flight model (FM):

JFY	2019	2020	2021	2022	2023	2024	2025	2026	2027
JAXA phase	phas	se A	pha	se B	phase C		phase D		
LFT-DM									
PLM-STM									
PLM-EM				+		→			Launch
FM									

LiteBIRD summary

Full Success:

- JAXA-led international mission proposal (12 countries)
- Status: Phase A (concept development)
- 3yr observations at L2

Backup slides 2018/10/16 LiteBIRD @ Tenerife foregrounds conference

Rationale for mission requirements

- Many models predict r > 0.01
- More general (less model-dependent) prediction
 - Focus on the simplest models based on Occam's razor principle
 → Single-field slow-roll (SFSR) models:
 - Detection of r > 0.002 establishes large-field variation (Lyth bound).
 - Significant impact on superstring theory that faces difficulty in dealing with $\Delta \phi > m_{pl}$
 - Obtaining r < 0.002 also has a significant impact on inflationary models and quantum gravity behind it.

Measurements w/ $\sigma(r)$ < 0.001 would provide a fairly definitive statement about the validity of the most important class of inflationary models, i.e. single field slow-roll models with $\Delta \phi$ exceeding the Planck scale, which would constitute a milestone in cosmology.

If evidence is found before launch

- r is fairly large → Comprehensive studies by LiteBIRD!
- Much more precise measurement of r from LiteBIRD will play a vital role in identifying the correct inflationary model.
- LiteBIRD will measure the B-mode power spectrum w/ high significance for each bump if r>0.01.
 - Deeper level of fundamental physics

No-Lose Theorem of LiteBIRD

Impacts of discovery

- Direct evidence for cosmic inflation in case power spectrum agrees w/ prediction
 - Many models predict 0.003 < r < 0.05
 - Narrowing down models in r vs. n_s plane
- Shed light on GUT-scale physics

$$V^{1/4} = 1.04 \times 10^{16} \times \left(\frac{r}{0.01}\right)^{1/4} [GeV]$$

- New era of physics w/ experimental tests of quantum gravity
 - First observation of quantum fluctuation of space-time
 - Studies on top-down constraints in string theory in progress
 - r > 0.01 not easy (super-Planckian field excursions)
- Unexpected discovery (e.g. non-standard power spectrum) may rule out standard inflation paradigm
- Sense of wonder beyond science!

Ground station (GREAT)

for Deep Space Exploration and Telecommunication

Summary of Ground Stations

station	Antenna diameter	Bands	Comments
GN (Ground Network)	10m	S up/down/range	3 stations in Japan, 4 outside Japan
"Uchinoura Space Center"	34m	S up/down/range X up/down Ka down	
	20m	S up/down/range X down	
KTU4	20m	S up/down/range X down	
UDSC	64m	S up/down/range X up/down/range	Will be replaced with the 54m antenna.
"Usuda Deep Space Center"	54m	X up/down/range Ka down	Under construction. Operational from 2019.

Antenna available for L2 mission in 2020s.

Only the limited data transfer is possible at L2.

Larger datalink capability