

Cosmology from the Planck satellite

- Planck 2018 results. I. Overview, and the cosmological legacy of Planck
- Planck 2018 results. II. Low Frequency Instrument data processing
- Planck 2018 results. III. High Frequency Instrument data processing
- Planck 2018 results. IV. CMB and foreground extraction
- Planck 2018 results. VI. Cosmological parameters
- Planck 2018 results. VIII. Gravitational lensing
- Planck 2018 results, X. Constraints on inflation
- Planck 2018 results. XI. Polarized dust foregrounds (submitted)
- Planck 2018 results. XII. Galactic astrophysics using polarized dust emission Not out yet:
- Planck 2018 results. V. Legacy Power Spectra and Likelihoods
- Planck 2018 results. VII. Isotropy and statistics
- Planck 2018 results. IX. Constraints on primordial non-Gaussianity
 Only lensing likelihoods release. CMB likelihoods with likelihood paper.

http://www.cosmos.esa.int/web/planck/publications

Silvia Galli

IAP

on behalf of the Planck Collaboration
Tenerife, 15/10/2018

The Planck satellite

3rd generation full sky satellites (COBE, WMAP) Launched in 2009, operated till 2013. 2 Instruments, 9 frequencies.

LFI:

22 radiometers at
 30, 44, 70 Ghz.

HFI:

- 50 bolometers (32 polarized) at **100, 143, 217, 353, 545, 857 Ghz.**
- 30-353 Ghz polarized.
- 1st release 2013: Nominal mission, 15.5 months, Temperature only (large scale polarization from WMAP).
- 2nd release 2015: Full mission, 29 months for HFI, 48 months for LFI, Temperature + Polarization
 Intermediate results 2016: low-l polarization from HFI
- 3nd release 2018: Full mission, improved polarization, low/highfrom HFI

Three important features of the Planck legacy release

1. Understanding and correction of systematics in polarization (large scales: map-making and sims. Small scales: beam leakage and polarization efficiency corrections). Changes of $< 1\sigma$ on parameters.

2018 Planck baseline results TT,TE,EE+low EE (I<30)+ CMB lensing(L=8-400)

(2015 was TT+lowP [+CMB lensing])

- 2. **Stability** of our scientific conclusions across the releases, confirmed by the 2018 legacy release.
- 3. Limitations and issues to be understood:
 - a. Small remaining uncertainties of systematics in polarization (quantified with alternative likelihood(CAMspec) at high-l which uses different choices than baseline (Plik)).
 - b. Some 2σ "curiosities" (A_I) in the internal consistency tests.
 - Comparison with a few external datasets have mild/strong tension.

2018 Power spectra

TT, TE, EE: different likelihoods at low-l (<30) and high-l (>30).

- 1. Results on ACDM
- 2. Comparison with external datasets
- 3. Results on extensions of ACDM

Baseline ACDM results 2018

(Temperature+polarization+CMB lensing)

	Mean	σ	[%]
$\Omega_b h^2$ Baryon density	0.02237	0.00015	0.7
$\Omega_c h^2$ DM density	0.1200	0.0012	1
100θ Acoustic scale	1.04092	0.00031	0.03
τ Reion. Optical depth	0.0544	0.0073	13
In(A _s 10 ¹⁰) Power Spectrum amplitude	3.044	0.014	0.7
n _s Scalar spectral index	0.9649	0.0042	0.4
H ₀ Hubble	67.36	0.54	0.8
$\Omega_{\rm m}$ Matter density	0.3153	0.0073	2.3
σ ₈ Matter perturbation amplitude	0.8111	0.0060	0.7
Z _{reio}	7.68	0.79	10.2

Robust against changes of likelihood, $< 0.5\sigma$.

- Most of parameters determined at (sub-) percent level!
- Best determined parameter is the angular scale of sound horizon θ to 0.03%.
- τ lower and tighter due to HFI data at large scales(LFI15: 0.067± 0.022).
- n_s is 8σ away from scale invariance (even in extended models, always >3σ)
- Best (indirect) 0.8% determination of the Hubble constant to date.

Baseline ACDM results 2018

(Temperature+polarization+CMB lensing)

	Mean	σ	[%]
$\Omega_b h^2$ Baryon density	0.02237	0.00015	0.7
$\Omega_c h^2$ DM density	0.1200	0.0012	1
100θ Angular scale	1.04092	0.00031	0.03
τ Reion. Optical depth	0.0544	0.0073	13
In(A _s 10 ¹⁰) Power Spectrum amplitude	3.044	0.014	0.7
n _s Scalar spectral index	0.9649	0.0042	0.4
H ₀ Hubble	67.36	0.54	0.8
Ω_{m} Matter density	0.3153	0.0073	2.3
σ ₈ Matter perturbation amplitude	0.8111	0.0060	0.7
Z _{reio}	7.68	0.79	10.2

Robust against changes of likelihood, $< 0.5\sigma$.

- Most of parameters determined at (sub-) percent level!
- Best determined parameter is the angular scale of sound horizon θ to 0.03%.
- τ lower and tighter due to HFI data at large scales(LFI15: 0.067± 0.022).
- n_s is 8σ away from scale invariance (even in extended models, always $> 3\sigma$)
- Best (indirect) 0.8% determination of the Hubble constant to date.

- 1. Results on ACDM
- 2. Comparison with external datasets
- 3. Results on extensions of ACDM

Good consistency with BAO, RSD, SnIa, planck

Strong tension with direct measurements of the expansion rate of the universe H₀.

• The Hubble constant H_0 directly measured using SNIa CALIBRATED WITH CEPHEIDS to obtain absolute calibration of luminosity-distance relation and thus $H_{0.}$

```
H_0 = 67.36 \pm 0.54 km/s/Mpc Planck \LambdaCDM 3.6\sigma H<sub>0</sub>= 73.5 \pm 1.6 km/s/Mpc SH0ES (Riess+ 18) tension
```

Other measurements:

```
Inverse distance ladder:
```

```
H_0= 67.9 ± 1.3 km/s/Mpc galBAO+(BBN+deuterium)+CMB lensing (or Ly\alphaBAO or DES lensing)
```

```
Time delay multiply-imaged quasars H_0=72.5^{+2.1}_{-2.3} km/s/Mpc H0LiCOW (Birrer+ 2018)
```

- Both CMB and inverse distance ladder H₀ measurements are indirect (model dependent) measurements.
- Maybe this indicates a break in the ΛCDM model!

- 1. Results on ACDM
- 2. Comparison with external datasets
- 3. Results on extensions of ACDM

Curvature Ω_k

Dark energy equation of state w

Both $\Omega_k < 1$ and phantom w<-1 can provide larger lensing amplitude. Agreement w. LCDM in combination with BAO. Results from CAMspec differ at $\sim < 0.5\sigma$ level.

$$\Omega_K = 0.0007 \pm 0.0019$$

$$w_a = 0,$$

$$w_0 = -1.028 \pm 0.032$$

(68 %, Planck TT,TE,EE+lowE +lensing+SNe+BAO),

Sum of neutrino mass

TTTEEE constraint differ in CAMspec by **15%**. Reduced when adding BAO.

Constraint from 2015 improved by about 30% (TT)-50%(TTTEEE) due to lower and tighter τ and change in polarization systematics.

Close to disantangle inverted/normal hierarchy

$$\sum m_{\nu} < 0.26 \text{ eV} \quad (95\%, Planck TT, TE, EE + lowE).$$

$$\sum m_{\nu} < 0.12 \text{ eV} \quad (95\%, Planck TT, TE, EE + lowE + lensing + BAO).}$$

Number of relativistic species

• CMB is sensitive to radiation density. $N_{\rm eff}$ is radiation density other than photon. $N_{\rm eff}$ =3.046 (standard).

$$\rho_{\rm rad} = N_{\rm eff} \, \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \, \rho_{\gamma}.$$

- Non-standard could be radiation (sterile neutrino, light relics) or non-standard thermal history.
- Planck 2018 constraint consistent to standard value (and same results with CAMspec).
- Proposed as possible solution to H₀ tension (N_{eff}-H₀degeneracy)
- Tension remains still at 3.2σ

$$N_{\text{eff}} = 2.99 \pm 0.17$$

 $H_0 = (67.3 \pm 1.1) \,\text{km s}^{-1} \text{Mpc}^{-1}$

Constraints on inflation

 $r_{0.002} < 0.10$ (95 % CL, Planck TT, TE, EE+lowE+lensing)

 $r_{0.002} < 0.064$

and adiabatic,

with negligible topological defects

(95 % CL, *Planck* TT, TE, EE+lowE+lensing + BK14)

Scalar spectral index

A spatially flat universe $\Omega_K = 0.0007 \pm 0.0019$ with a *nearly* scale-invariant (red) spectrum of density perturbations, $n_{\rm s} = 0.967 \pm 0.004$ which is almost a power law, $dn/d \ln k = -0.0042 \pm 0.0067$ dominated by scalar perturbations, $r_{0.002} < 0.07$ which are Gaussian $f_{\rm NL} = 2.5 \pm 5.7$

 $\alpha_{-1} = 0.00013 \pm 0.00037$

f < 0.01

Conclusions

- 1. Planck results stable across releases
- 2. Polarization now better understood (but not perfect; $\sim 0.5\sigma$ systematic uncertainty)
- 3. Consistency with BAO, SN, RSD, DES lensing (in Λ CDM)
- 4. Moderate tension with DES joint probes
- 5. Strong 3.6σ tension with H_0 from SH0ES Planck value in agreement with inverse distance ladder independent of CMB (BAO+D/H+CMB lensing).
- 6. Some curiosities (A_L , low-high features), but not more than $2\sigma 3\sigma$, no evidence for extensions of Λ CDM

« What we have learned, and the legacy from Planck, is that any signatures of new physics in the CMB must be small. »

The scientific results that we present today are a product of Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

Deutsches Zentrum
DLR für Luft- und Raumfahrt e.V.

provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Planck is a project of the European Space

> Agency, with instruments