SO Science Goals and Forecasts: 1808.07445

see also 2018 SPIE papers

https://simonsobservatory.org/ publications.php

Colin Hill (IAS/CCA)

on behalf of the Simons Observatory Collaboration

CMB Foregrounds for B-mode Studies

Tenerife, Spain 15 October 2018

Colin Hill IAS/CCA

The Simons Observatory is funded by generous grants from the Simons Foundation and the Heising-Simons Foundation

The Simons Observatory Collaboration

United States

- Arizona State University
- Carnegie Mellon University
- Center for Computational Astrophysics
- Cornell University
- Florida State
- Haverford College
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

Japan

- KEK
- IPMU
- Tohoku
- Tokyo

- 10 Countries
 - 40+ Institutions
 - 160+ Researchers
 - *~200

Canada

- CITA/Toronto
- Dunlap Institute/Toronto
- McGill University
- Simon Fraser University
- University of British Columbia

Chile

- Pontificia Universidad Catolica
- University of Chile

Europe

- APC France
- Cambridge University
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy
- University of Sussex

South Africa

• Kwazulu-Natal, SA

Australia

- Melbourne
- Middle East
- Tel Aviv

The Simons Observatory Collaboration

Stamora Omversity/JLAC

- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

Japan

- KEK
- IPMU
- Tohoku
- Tokyo

SO @ Penn, June 2018

- Cambridge University
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy
- University of Sussex

South Africa

• Kwazulu-Natal, SA

Australia

- Melbourne
- Middle East
- Tel Aviv

Simons Observatory Science Goals and Probes IAS/CCA

Additional science includes (but is not limited to):

- helium fraction, cosmic birefringence, primordial magnetic fields
- high-redshift clusters
- · dark matter annihilation and interactions
- isocurvature
- calibration of multiplicative shear bias (e.g., for LSST)
- new sample of dusty star-forming galaxies
- transient sources
- cosmic infrared background

THE SIMONS OBSERVATORY: SCIENCE GOALS AND FORECASTS 1808.07445

Simons Observatory Site

Colin Hill

IAS/CCA

Colin Hill Simons Observatory Instruments & Technology IAS/CCA

6 m crossed Dragone fed by up to 13, 38 cm optics tubes. baseline=7 tubes for SO, with baseline pixels:

- One tube: 30/40 GHz
- Four tubes: 90/150 GHz
- Two tubes: 220/270 GHz

FIRST LIGHT IN 2021

Simons Observatory Layout

Colin Hill IAS/CCA

One 6m Large Aperture Telescope Three 0.5m Small Aperture Telescopes Five-year survey planned 2021-26, six frequencies 30-280 GHz

Large telescope: resolution needed for all science goals except tensor-to-scalar ratio Small telescopes: lower noise at the few-degree-scale B-mode signal, for tensor-to-scalar ratio

Anticipated Noise Performance

			SATs $(f_{sky} = 0.1)$			LAT $(f_{sky} = 0.4)$	
Freq. [GHz]		FWHM (')	Noise (baseline)	Noise (goal)	FWHM (')	Noise (baseline)	Noise (goal)
			$[\mu \text{K-arcmin}]$	$[\mu \text{K-arcmin}]$		$[\mu \text{K-arcmin}]$	$[\mu \text{K-arcmin}]$
IF	27	91	35	25	7.4	71	52
L 1	39	63	21	17	5.1	36	27
	93	30	2.6	1.9	2.2	8.0 Sukamir	5.8
	145	17	3.3 ² µk-amin	2.1	1.4		6.3
	. 225	11	6.3	4.2	1.0	22	15
HF	280	9	16	10	0.9	54	37

White noise levels for 5-yr survey; also include atmospheric noise model and combine with Planck

Anticipated Noise Performance (LAT)

Colin Hill IAS/CCA

			SATs $(f_{\rm sky} = 0.1)$			LAT $(f_{sky} = 0.4)$	
Freq. [GHz]		FWHM (')	Noise (baseline)	Noise (goal)	FWHM (')	Noise (baseline)	Noise (goal)
			$[\mu \text{K-arcmin}]$	$[\mu \text{K-arcmin}]$		$[\mu \text{K-arcmin}]$	$[\mu \text{K-arcmin}]$
IF	27	91	35	25	7.4	71	52
	39	63	21	17	5.1	36	27
N / C	93	30	2.6	1.9	2.2	8.0 Sukamin	5.8
	145	17	3.3 ² ^μ κ-amin	2.1	1.4		6.3
	. 225	11	6.3	4.2	1.0	22	15
	280	9	16	10	0.9	54	37

White noise levels for 5-yr survey; also include atmospheric noise model and combine with Planck

Anticipated Noise Performance (SATs)

Colin Hill IAS/CCA

	$ SATs (f_{sky} = 0.1)$			LAT $(f_{\rm sky} = 0.4)$			
Freq. [GHz]		FWHM (')	Noise (baseline)	Noise (goal)	FWHM (')	Noise (baseline)	Noise (goal)
			$[\mu \text{K-arcmin}]$	$[\mu \text{K-arcmin}]$		$[\mu \text{K-arcmin}]$	$[\mu \text{K-arcmin}]$
IF	27	91	35	25	7.4	71	52
L I	39	63	21	17	5.1	36	27
	93	30	2.6	1.9	2.2	8.0 Sukamir	5.8
	145	17	3.3 ² µk-anin	2.1	1.4		6.3
	225	11	6.3	4.2	1.0	22	15
HF	280	9	16	10	0.9	54	37

White noise levels for 5-yr survey; also include atmospheric noise model and combine with Planck

also consider two ell_{knee} cases for SATs

Anticipated Sky Coverage

Colin Hill IAS/CCA

SAT BB forecasting based on full-sky simulated maps (PySM) w/ multiple sets of realistic foregrounds

Sky models are combined with SO SAT noise model, then coupled to several foreground mitigation schemes (cross-spectrum analysis, xForecast, BFoRe, harmonic-space ILC) to infer *r*

Colin Hill IAS/CCA

SAT BB forecasting based on full-sky simulated maps (PySM) w/ multiple sets of realistic foregrounds

Sky models are combined with SO SAT noise model, then coupled to several foreground mitigation schemes (cross-spectrum analysis, xForecast, BFoRe, harmonic-space ILC) to infer *r*

Colin Hill IAS/CCA

Robust to variations in foreground model complexity (within the space of models explored)

Colin Hill IAS/CCA

Robust to variations in foreground model complexity (within the space of models explored)

A dedicated delensing survey is not necessary; external delensing suffices

SO SAT Science: Primordial Perturbations

SO will detect or rule out models with r >= 0.01at 3σ or greater

Colin Hill

SO LAT Forecasting Methodology

Colin Hill IAS/CCA

LAT T forecasting based on high-resolution, full-sky simulated maps w/ realistic foregrounds and signals (e.g., correlated extragalactic fields)

LAT E/B forecasting based on simulated power spectra, calibrated to match SAT BB assumptions at degree scales

SO LAT Forecasting Methodology

Colin Hill IAS/CCA

LAT T forecasting based on high-resolution, full-sky simulated maps w/ realistic foregrounds and signals (e.g., correlated extragalactic fields)

LAT E/B forecasting based on simulated power spectra, calibrated to match SAT BB assumptions at degree scales

Sky models are combined with SO LAT noise model (and Planck), then coupled to (constrained) harmonic-space internal linear combination (ILC) to derive component-separated noise curves

SO LAT Science Observables

Colin Hill IAS/CCA

SO LAT Science: Primordial Perturbations

Colin Hill IAS/CCA

Primordial scalar power spectrum

0.4% constraint at k~0.2/Mpc (10x improvement over Planck)

SO LAT Science: Primordial Perturbations

Colin Hill IAS/CCA

SO LAT Science: Light Relics

SO can detect any particle with spin that decoupled after the start of the QCD phase transition (at 2σ)

Colin Hill

IAS/CCA

 $\sigma(N_{eff}) = 0.07$

Forecasts are strongly robust to foregrounds (driven by TE + EE)

Other damping tail science: - BBN (Y_p)

- H₀ improvement (~2x)
- Dark matter interactions
- Ultra-light axions
- and more

SO LAT Science: Neutrino Masses

Colin Hill IAS/CCA

Constraints derived from CMB lensing power spectrum (+DESI BAO), tSZ cluster counts (+LSST WL), and tSZ power spectrum (+DESI BAO)

SO LAT Science: Dark Energy

Colin Hill IAS/CCA

Constraints derived from tSZ cluster counts (+LSST WL and/or SO CMB lensing), and CMB lensing cross-correlations w/ LSST galaxies

Amplitude of fluctuations as a function of redshift

DE equation of state (via tSZ cluster counts)

$\sigma(w_0) = 0.06,$	$\Lambda \text{CDM} + w_0 + w_a$
$\sigma(w_a) = 0.20,$	
$\sigma(w_0) = 0.08,$	$\Lambda \text{CDM} + w_0 + w_a + \Sigma m_{\nu}$
$\sigma(w_a) = 0.32,$	

Unique ability to search for deviations from Λ at z > 1 (complementary to lower-redshift WL and galaxy surveys)

c.f. also improved $\sigma(H_0)$

SO LAT Science: Galaxy Formation/Evolution

Constraints derived from joint analysis of tSZ and kSZ measurements of DESI Luminous Red Galaxies (just one example cross-correlation!)

~Few percent constraints on feedback efficiency and nonthermal pressure support

>2000 detection of tSZ PS >1000 detections of kSZ cross-corrs.

Legacy catalogs

SZ clusters	20000
AGN galaxies	10000
Dusty star-forming galaxies	10000

+transient sources

SO LAT Science: Reionization

Colin Hill IAS/CCA

Constraints derived from kSZ power spectrum via TT combined with TE/ EE (also, potentially from higher-order kSZ statistics)

 $\sigma(\Delta z_{\rm re}) = 0.40$

	Parameter	$\mathbf{SO-Baseline}^{c}$	SO-Goal ^d	Current ^e	Method
Primordial	r	0.003	0.002	0.03	BB + ext delens
perturbations	$e^{-2 au} \mathcal{P}(k=0.2/\mathrm{Mpc})$	$\mathbf{0.5\%}$	0.4%	3%	TT/TE/EE
	$f_{ m NL}^{ m local}$	3	1	5	$\kappa\kappa \times \text{LSST-LSS} + 3\text{-pt}$
		2	1		kSZ + LSST-LSS
Relativistic species	$N_{ m eff}$	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$
Neutrino mass	$\Sigma m_ u$	0.04	0.03	0.1	$\kappa\kappa + \text{DESI-BAO}$
	2	0.04	0.03		$tSZ-N \times LSST-WL$
		0.05	0.04		tSZ-Y + DESI-BAO
Deviations from Λ	$\sigma_8(z=1-2)$	2% 2%	$1\% \\ 1\%$	7%	$\kappa\kappa + LSST-LSS + DESI-BAO$ tSZ-N × LSST-WL
	$H_0~(\Lambda { m CDM})$	0.4	0.3	0.5	$TT/TE/EE+\kappa\kappa$
Calarra analation		007	007	FO 10007	
Galaxy evolution	$\eta_{ ext{feedback}}$	3% 8%	2% 5%	50-100%	kSZ + tSZ + DESI
	$p_{ m nt}$	0/0	J /0	00-10070	$ \mathbf{K} \mathbf{\Sigma} \mathbf{\Sigma} + \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma} + \mathbf{U} \mathbf{\Sigma} \mathbf{\Sigma} \mathbf{\Sigma}$
Reionization	Δz	0.6	0.3	1.4	TT (kSZ)

All quoted errors are 1σ All forecasts assume SO + Planck Baseline SO forecasts include systematic error budget

Simons Observatory Outlook

- site design and construction
- analysis pipeline development
- calibration strategy
- etc.

Thanks!

https://simonsobservatory.org/

The Simons Observatory Large Aperture telescope

- The back of the camera can be accessed while installed on the telescope.
- Developed in collaboration with CCAT and built by Vertex
- The telescope is capable of > 100,000 detectors

3D Cross-section of Yoke Structure and Elevation Housing (view towards M1)

for Simons Observatory Large Aperture: ~21 wafers → ~30,000 detectors

The Simons Observatory Small Aperture Camera

The Simons Observatory Small Aperture Camera PRELIMINARY DESIGN

for Simons Observatory: ~21 wafers \rightarrow ~30,000 detectors

The Simons Observatory Detectors two detector architectures

Spline Horn Array (NIST)

Sinuous antenna + lenslet array (Berkeley)

both detector technologies can be read out with the same frequency multiplexing system

The Simons Observatory Detector Readout

- Frequency domain multiplexing
- Send in a comb of narrow frequency bands (tones)
- Each detector is coupled to a resonant circuit such that its output signal is converted to a change in the resonance of the circuit

uMux – current through the TES couples flux into a flux-variable inductor in an LC circuit

The Simons Observatory Calibration

we are working on requirements for bandpass measurements, gain, beams and polarization angles

Fig. 1. Three different configurations for POLOCALC (starting from the left): 1) from a ground tripod 2) from a flying drone and 3) from a high-altitude balloon.

The Effects of Bandpass Variations on Foreground Removal Forecasts for Future CMB Experiments Ward, Alonso, Errard, Devlin, Hasselfield [arXiv:1803.07630]

The Simons Observatory — technical summary

- 2-mirror design with a side-looking camera
- the camera rotates with the elevation axis
- the back of the camera can be accessed while installed on the telescope
- constructed by Vertex, in collaboration with CCAT
- 1.4' FWHM @ 150GHz
- 2.8 m x 2.5 m / 5,000kg cryostat
- 70,000+ detector capacity (30,000 planned for SO)
- modular design receiver for optics tube

- 42 cm aperture size, 35 degree FoV
- 30,000 detectors for SO
- continuously rotating HWP
- 4.2 meter high, 7 meter diameter ground shield

SO deliverables for small + large apertures ~ 42 wafers → 60,000 detectors