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B-mode polarization
Initial conditions:
• compatible with scalar perturbations
• Information in temperature anisotropies 

already exploited

➡ PolarizationTemperature anisotropies E

E

B

B
Scalar perturbations ➡ E modes
B-modes: clean channel for probing anything else

E E

B

Lensing B-modes (small scales)
‣ probe structure formation  

(neutrino mass, dark energy)

Image credits: Planck/ESA, Bicep2 (adapted)

E

B
Tensor 
perturbations

Primordial B-modes (large scales)
‣ probe inflation  

(energy scale, consistency relation…)

Many others (e.g. primordial magnetic 
fields, birefringence)



First measurements of lensing B-modes since 2014

Primordial B-modes still undetected


Challenges


• Sensitivity


• Atmosphere


• Foregrounds


• Systematics
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B-mode measurements

Image by Y. Chinone (adapted)

Prim
ordial B-m

odes
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g B-m

odes

Dust + synchrotron at 150 GHz 1 to 90% of the sky
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For more details 
Kermish et al. (2012) 
Arnold et al. (2012)

POLARBEAR design
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• Off-axis Gregorian-Dragone design
•  2.5 m primary mirror
•  3.5‘ FWHM beam
• Focal plane cooled at 250 mK
• Lenslet-coupled double slot antennas
• 1274 TES bolometers at 150 GHz



POLARBEAR observational campaigns
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RA12

RA4.5
RA23

Large patch

80 % of the 
sky Chile

Atacama desert (altitude ~5200 m)
• Access to 80% of the sky
• Dry atmosphere

First and second season
• 3 x 10 deg2 patches
• Sub-degree B-modes 

(lensing)

Third to fifth season
• 20x35 deg patch
• Primordial B-modes

PLANCK Commander 
 Thermal Dust Intensity



POLARBEAR publications
• Lensing power spectrum POLARBEAR Collab. PRL 113, 021301 (2014a)

• Cross-correlation galaxy-CMB lensing  
POLARBEAR Collab. PRL 112, 131302 (2014b)

• One-year B-mode power spectrum POLARBEAR Collab. ApJ 794, 171 (2014c)

• Atmospheric emission modelling Errard et al, ApJ 809, 63 (2015) 

• Constraints on cosmic birefringence and primordial magnetic fields:                                                                          
POLARBEAR Collab. PRD 92, 123509 (2015)

• Unbiased mapmaking technique Poletti et al A&A Vol 600 (2017)

• Two-year B-mode power spectrum POLARBEAR Collab. ApJ 848, 121 (2017)

• Continuously rotating HWP demonstration Takakura et al, JCAP 05 008 (2017)

• Polarization from ice clouds: Takakura et al, arXiv:1809.06556 (submitted ApJ) 

In preparation / ongoing analyses

• Two-season lensing power spectrum

• Two-season cross-correlation high-z galaxies-CMB lensing

• Cross-correlation galaxy lensing-CMB lensing

• Large patch analysis
�7



First season cosmological results
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Lensing reconstruction from polarization 
alone 4.2σ B-modes evidence

 Phys. Rev. Lett. 112, 131302 (2014)

4.0σ polarized lensing
Phys. Rev. Lett. 112, 131302 (2014)
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Fig. 12.— Binned CBB
� spectrum measured using data from all three patches (⇥ 30 deg2). A theoretical wmap-9 ⇥CDM high-resolution

CBB
� spectrum with ABB= 1 is shown. The uncertainty shown for the band powers is the diagonal of the band power covariance matrix,

including beam covariance.

TABLE 8
Reported Polarbear band powers and the diagonal

elements of their covariance matrix

Central ⇥ ⇥ (⇥+ 1)CBB
� /2� [µK2] �{⇥ (⇥+ 1)CBB

� /2�} [µK2]
700 0.093 0.056

1100 0.149 0.117
1500 �0.317 0.236
1900 0.487 0.482

trum; including statistical uncertainty and beam covari-
ance, this PTE is 42%. Table 8 enumerates the band
powers reported here.
We fit the band powers to a �CDM cosmological

model with a single ABB amplitude parameter. We find
ABB = 1.12 ± 0.61(stat)+0.04

�0.10(sys) ± 0.07(multi), where
ABB = 1 is defined by the wmap-9 �CDM spectrum.
To calculate the lower bound on the additive uncertain-
ties on this number, we linearly add, in each band, the
upper bound band powers of all the additive systematic
e⇥ects discussed in Section 7, and the uncertainty in the
removal of E to B leakage. We then subtract this possi-
ble bias from the measured band powers, and calculate
ABB . This produces a lower ABB , and sets the lower
bound of the additive uncertainty. We then repeat the

process to measure the upper bound. The multiplicative
uncertainties are the quadrature sum of all the multi-
plicative uncertainties discussed in Section 7.
The measurement rejects the hypothesis of no CBB

�
from lensing with a confidence of 97.5%. This is calcu-
lated using the bias-subtracted band powers described
above (the most conservative values to use for rejecting
this null hypothesis), and integrating the likelihood of
ABB> 0. This significance is the equivalent of 2.0� for a
normal distribution.

9. SUMMARY & DISCUSSION

We have reported a measurement of the CMB’s B-
mode angular power spectrum, CBB

� , over the multipole
range 500 < ⇥ < 2100. This measurement is enabled by
the unprecedented combination of high angular resolu-
tion (3.5⇥) and low noise that characterizes the Polar-
bear CMB polarization observations.
To validate the Polarbear measurement of this faint

signal, we performed extensive tests for systematic er-
rors. We evaluated nine null tests and estimated twelve
sources of instrumental contamination using a detailed
instrument model, and found that all the systematic un-
certainties were small compared to the statistical uncer-
tainty in the measurement. To motivate comprehensive

Constraint on cosmic birefringence and 
primordial magnetic fields

Phys. Rev. D  92, 123509 (2015)

97.5% c.l. B-modes direct 
evidence of B-modes

Astrophysical J. 794, 171 (2014)
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White-noise level 6 µKarcmin

POLARBEAR Second Season Results  
POLARBEAR Collaboration ApJ 848, 121 (2017)
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Compared to first season results:
- 61% more data
- Improved calibration
- New independent pipeline 

(Poletti et al, 2017)
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3º x 3º 
center



Validation 
POLARBEAR Collaboration ApJ 848, 121 (2017)
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𝐶𝐵𝐵
ℓ

Blind policy 
Data selection and quality assessment before inspecting the BB power spectrum

NULL TESTS
Systematics control and error-bars 
validation.
(temporal, weather, scan direction, 
calibration, sun or moon 
location…)

Compatible with flat distribution 
(i.e. the null spectra are compatible 
with the noise model)
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INSTRUMENTAL EFFECTS

End-to-end propagation of systematics.
Polarization angle  
Pointing 
Gain drifts
Differential gain 
Readout crosstalk
Differential beam ellipticity and shape.

Systematics  
combined

Statistical 
uncertainty



Foregrounds 
POLARBEAR Collaboration ApJ 848, 121 (2017)
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Diffuse foregrounds
Dust and synchrotron are evaluated using 
Planck 353 GHz and 30 GHz and WMAP K-
band polarization maps.
• Extend the patches
• Measure foregrounds power at large 

scales (            )
• Extrapolate the power spectrum to PB 

angular scales and frequency
➡ Contamination compatible with zero

Dusty and radio galaxies
Set of simulated galaxies with distribution, 
intensity and polarization fraction modelled 
after observation (De Zotti et al, 2005; 
George et al, 2015; Bonavera et al, 2017)

` = 80

𝐶𝐵𝐵
ℓ



POLARBEAR Second Season Results 
POLARBEAR Collaboration ApJ 848, 121 (2017)
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• All spectra are compatible with ΛCDM and 
between the pipelines (28% pte)

• 3.1σ rejection of no B-modes
• Measured amplitude of lensing B-modes

PTE w/ 
ΛCDM 
32% 
28% 

62% 
26% 

92% 
67% 

79% 
29% 

60% 
75%

PTE w/ 
ΛCDM 
55% 
41%

AL = 0.60+0.26
−0.24(stat) +0.00

−0.04(inst) ± 0.14(foreground) ± 0.04(mult)



Towards primordial B-modes

• After second season: 
Observation of a 700 deg2 patch

• Continuously rotating half-wave 
plate (CRHWP) installed at the 
prime focus

�13Images: Takakura et al (2017), N.Goeckner-Wald



�14

Input polarization
Output polarization

ωt

On-sky performance of the CRHWP 
Takakura et al, JCAP 05 008 (2017)

• Atmospheric signal has strong 1/f 
component

• CRHWP spinning at 2 Hz
➡ Polarization modulated at 8Hz

• 1/f knee 32 mHz (            )

Atmospheric 1/f

Po
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er
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en
si

ty

Frequency

ℓ ∼ 39

2πω × 4



Large patch analysis 
POLARBEAR Collaboration, in preparation

• Effective sky area: 700 deg2


• Three season data


• Analysis ongoing, stay tuned 
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Image by N.Goeckner-Wald

Preliminary



POLARBEAR-2A receiver
• Broadband sinuous antennas

• 7,588 bolometers observing in 95 GHz 
and 150 GHz band

• Nominal array sensitivity at 150 GHz 
                          (Suzuki et al, 2015)

• Broadband HWP at secondary focus      
(Hill and Beckman et al, 2016)

• First light by the end of 2018
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19 cm

36.5 cm

5.8 μKCMB s

Field of view x2.1

N detectors x6

N frequencies 
x2



Simons Array
• 3 telescopes


• 22,764 bolometers total


• Frequency bands: 95 / 150 / 220 / 270 GHz


• Full array projected sensitivity 
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2.5 μKCMB s

POLARBEAR-2A 
95 / 150 GHz 
(end of 2018)

POLARBEAR-2B 
95 / 150 GHz 

(2019)

POLARBEAR-2C 
220 / 270 GHz 

(2019)



polarized dust @ 95GHzp=15%, fsky=65%

polarized dust @ 95GHzp=15%, fsky=5%

polarized synchrotron @ 95GHz

p=15%, fsky=65%
polarized synchrotron @ 95GHz

p=15%, fsky=5%

r=0.1

r=0.01

95% c.l. upper limit on
the foreground residual

Simons array
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Expected constraints after foreground 
cleaning on the tensor-to-scalar ratio

and on the total neutrino mass (when 
cross-correlated with galaxy surveys)

(Stebor et al, 2016)

➱ Constrain inflation, neutrino 
mass hierarchy, primordial 
magnetic fields and more...

σ(r = 0.1) = 6 ⋅ 10−3

σ(Σ mν) = 40 meV



Conclusions
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Polarbear probing B-modes from 
the Atacama desert

First and second season 
Important contributions to CMB sub-
degree polarization science, in 
particular for B-modes

Third to fifth seasons  
Focus on degree scale with large 
patch and CRHWP

Polabear 2 and Simons Array  
Increased sensitivity and frequency 
coverage coming very soon

Simons Observatory…wait a few 
minutes



Thanks


