LSPE: the Large Scale Polarization Explorer

Aniello Mennella for the LSPE collaboration

University of Milan, Dept. of Physics

INFN-Milan

LSPE people

G.Addamo P. Ade G. Amico C. Baccigalupi A. Baldini P. Battaglie A. Baù M. Bersanelli M. Biasotti C. Boragno A. Boscaleri A. Buzzelli P. Cabella B. Caccianiga S. Caprioli F. Cavaliere F. Cei V. Ceriale E. Cesarini S. Chiozzi K. Cleary E. Coccia L. Colombo

G. Coppi G. Coppi A. Coppolecchia D. Corsini A. Cotta Ramusino F. Cuttaia G. D'Alessandro S. D'Antonio L. De Angelis P. de Bernardis G. De Gasperis V. Fafone F. Fontanelli F. Forastieri C. Franceschet E. Fumagalli T. Gaier L. Galli F. Gatti R. Genova-Santos M. Gervasi M. Giovannini M. Grassi D. Grosso

A. Gruppuso S. Haridasu Balakrishna R. Hoyland G. lacobellis M. Incagli F. Incardona S. lovenitti M. Jones N. Krachmalnicoff L. Lamagna M. Lattanzi M. Lembo M. Lorenzini V. Lukovich D. Maino T. Marchetti M. Maris L. Martinis S. Masi A. May M. McCulloch S. Melhuish F. Mena A. Mennella

M. Migliaccio A. Moggi D. Molinari G. Morgante **U.** Natale P. Natoli D. Nicolò L. Pagano A. Paiella F. Paonessa D. Paradiso A. Passerini A. Perez O. Peverini F. Pezzotta F. Piacentini L. Piccirillo M. Piendibene C. Pincella G. Pisano L. Polastri G. Polenta S. Realini R, Rebolo

N Reves S. Ricciardi A. Rocchi C. Rossi J.A. Rubino S. Sartor A. Schillaci G. Signorelli F. Spinella V. Tapia A. Taylor L. Terenzi M. Tomasi E. Tommasi C. Tucker D. Vaccaro F. Villa G. Virone N. Vittorio A. Volpe B. Watkins A. Zacchei M. Zannoni G. Zavattini

F. Columbro

Collaboration and funding agencies

INFN

CMB foregrounds for B-mode studies

Tenerife, 15-18 October 2018

Measurements state of the art

INFN

Measurements state of the art

Worldwide competition

Project	Country	Location	Status	Frequencies	ℓ range		$\sigma(r)$ goal	
				(GHz)	value	Ref.	no fg.	with fg.
QUBIC	France	Argentina	2018	150,220	30-200		0.006	0.01
Bicep3/Keck	U.S.A.	Antartica	Running	95, 150, 220 ¹	50-250	[<mark>22</mark>]	$2.5 \ 10^{-3}$	0.013
CLASS	U.S.A.	Atacama	> 2017	38, 93, 148, 217	2-100	[<mark>29</mark>]	1.4 10 ⁻³	0.003
SPT3G	U.S.A.	Antartica	2017	95, 148, 223	50-3000	[<mark>23</mark>]	$1.7 \ 10^{-3}$	0.005
AdvACT	U.S.A.	Atacama	Starting	90, 150, 230	60-3000	[<mark>24</mark>]	1.3 10 ⁻³	0.004
Simons Array	U.S.A.	Atacama	≥ 2017	90, 150, 220	30-3000	[<mark>25</mark>]	1.6 10 ⁻³	0.005
LSPE	Italy	Arctic flight + Tenerife	2018	43, 90, 140, 220, 245	3-150	[<mark>30</mark>]		0.007
EBEX10K	U.S.A.	Antartica	≥ 2017	150, 220, 280, 350	20-2000	[<mark>28</mark>]	$2.7 \ 10^{-3}$	0.007
SPIDER	U.S.A.	Antartica	Running	90, 150	20-500	[<mark>26</mark>]	3.1 10 ⁻³	0.012
PIPER	U.S.A.	Multiple	2017?	200, 270, 350, 600	2-300	[<mark>27</mark>]	3.8 10 ⁻³	0.008

Worldwide competition

Project	Country	Location	Status	Frequencies	ℓ range		$\sigma(r)$ goal	
				(GHz)	value	Ref.	no fg.	with fg.
QUBIC	France	Argentina	2018	150,220	30-200		0.006	0.01
Bicep3/Keck	U.S.A	Antortion	Dunning	05 150 0001	50 250	[<mark>22</mark>]	$2.5 \ 10^{-3}$	0.013
CLASS	U.S	J.S. + Simons observatory 2016 – 2021					1.4 10 ⁻³	0.003
SPT3G	U.S.	S						0.005
AdvACT	U.S. + CMB S4, 2020 – 2024				000	[<mark>24</mark>]	1.3 10 ⁻³	0.004
Simons Array	U.S. [25] 1.6 10 ⁻³ 0.00							0.005
LSPE	Italy	Arctic flight + Tenerife	2018	43, 90, 140, 220, 245	3-150	[<mark>30</mark>]		0.007
EBEX10K	U.S.A.	Antartica	≥ 2017	150, 220, 280, 350	20-2000	[<mark>28</mark>]	$2.7 \ 10^{-3}$	0.007
SPIDER	U.S.A.	Antartica	Running	90, 150	20-500 [26]		3.1 10 ⁻³	0.012
PIPER	U.S.A.	Multiple	2017?	200, 270, 350, 600	2-300	[27]	3.8 10 ⁻³	0.008

Foreground control

Planck collaboration et al, 2015, A&A, 594, A10

Foreground control

LSPE frequencies

- LSPE exploits the combination of different technologies to cover a wide frequency range
- It will measure microwave emissions from synchrotron and thermal dust

Planck collaboration et al, 2015, A&A, 594, A10

LSPE scientific objectives

INFN

LSPE – The SWIPE instrument

INFN

LSPE – The SWIPE focal planes

LSPE – The SWIPE focal planes

With 10-20 modes per frequency channel this configuration allows a final sensitivity ranging from 10 μ K-arcmin at 140 GHz to 80 μ K-arcmin at 240 GHz

The SWIPE focal plane

- 110 detectors at 140 GHz
- 112 detectors at 220 GHz
- 112 detectors at 240 GHz
- TES bolometers coupled to multi-moded feedhorns

LSPE – The SWIPE feed horns

Channel	ν _{min} (GHz)	$N_{modes}(v_{min})$	$v_{max}(GHz)$	$N_{modes}(v_{max})$	v _{eff} (GHz)	$N_{modes}(v_{eff})$
140	119	10	161	17	140	12
220	214	28	226	31	220	30
240	234	32	246	35	240	34

Tenerife, 15-18 October 2018

LSPE – The STRIP instrument

LSPE – The STRIP instrument

LSPE – The STRIP instrument

CMB foregrounds for B-mode studies

Tenerife, 15-18 October 2018

INFN

CMB foregrounds for B-mode studies

Tenerife, 15-18 October 2018

INFN

CMB foregrounds for B-mode studies

STRIP mount and optics

3-AXES TELESCOPE MOUNT

- Fully rotating **azimuth axis** at 1 r.p.m.
- Elevation axis fixed at 20°
- Boresight axis (fixed)

OPTICS

- Crossed-Dragone configuration with 1.5 m aperture
- F/# = 1.8
- Comoving baffle

INFN

H-plane at 47.3 GHz (all feedhorns)

Tenerife, 15-18 October 2018

INFN

INFN

Q-BAND

- FWHM \approx 21 arcmin
- Ellipticity 1.003 1.033
- Directivity \approx 54.7 dBi
- Cross-polarization < -40 dB

Q-BAND

- FWHM \approx 21 arcmin
- Ellipticity 1.003 1.033
- Directivity \approx 54.7 dBi
- Cross-polarization < -40 dB

W-BAND

- FWHM \approx 9.5 arcmin
- Ellipticity 1.006 1.041
- Directivity \approx 61.4 dBi
- Cross-polarization < -40 dB

INFN

Q-BAND

- FWHM \approx 21 arcmin
- Ellipticity 1.003 1.033
- Directivity \approx 54.7 dBi
- Cross-polarization < -40 dB

W-BAND

- FWHM \approx 9.5 arcmin
- Ellipticity 1.006 1.041
- Directivity \approx 61.4 dBi
- Cross-polarization < -40 dB

INFN

Tenerife, 15-18 October 2018

STRIP receivers

Heritage from QUIET

Receivers based on QUIET design

- 49 receivers at 43 GHz: 19 QUIET receivers + 30 custom-built on the same design.
- 6 QUIET receivers at 95 GHz

Courtesy of the QUIET collaboration

STRIP receivers

QUIET polarimeters architecture

- Allows to measure directly Q and U from each feed-horn
- Insensitive to total intensity
- Exceptional stability and insensitivity to systematic effects

STRIP Q-band polarimeters measured performance

Preliminary – Before tuning optimization (to be performed at system level)

INFN

Tenerife, 15-18 October 2018

Observed sky and expected sensitivity

Expected final sensitivity (two years, 35% duty cycle)

- $\Delta Q/U \sim 1.7 \mu K.degree$
- Estimated ~ 17 K noise temperature from atmosphere and optics (telescope, window, filters)

Conclusions and perspectives

- The LSPE approaches the quest for CMB B-modes by measuring a large portion of the Northern sky over a wide frequency range, allowing us to assess the synchrotron and dust contributions.
- The signal at high frequencies will be measured from the stratosphere to eliminate the effect of the atmosphere
- The 40 GHz measurements will be carried out from Tenerife, a precious opportunity to join efforts with the QUIJOTE team in the characterization of low frequency foregrounds
- STRIP be deployed at the end of 2019 and will start observing during 2020. SWIPE launch will be during the winter 2019-2020

Backup slides

- Near and far-field calibrators
- Polarizers and OMTs
- Feedhorn antenna test setup
- Polarimeters cryogenic test setup
- System level test setup

STRIP receiver calibration system

STRIP receiver calibration system

Relative calibration

- Near field calibration system illuminates the focal plane with periodic stable signal
- Noise generator / Gunn diode installed into optical assembly

STRIP far field calibration system

Far field calibration system

- Signal generators in Q and Wbands carried on drone
- Will be used to calibrate main beams and sidelobes during onsite calibration phase

STRIP polarizers and OMTs

50

Polarizer and OMT assemblies (CNR-IEIIT, Turin)

- Circular polarization input to polarimeters produced with a polarizer-OMT assembly
- Exceptional performance in terms of low level of cross polarization

STRIP antenna testing

Antenna test setup at Uni. Milan

- Feed horns tested in anechoic chambers with VNA up to 110 GHz
- Extremely low level systematic effects allowed us to test sidelobes down to -50 dB

STRIP polarimeters cryogenic testing

Test setup at Uni. Milan Bicocca

- Polarimeters tested for functionality, Tnoise, bandwidth and stability
- Signal injected in polarimeters via a magic T to mix a thermal load with a swept source CW signal

STRIP system level testing

Test setup at INAF Bologna

- Crane Bridge
- Areas for assembly
- Shelfs for storage
- He gas / LN2
- RF Instruments
- Thermal control & monitoring
- Clean Room Cl 100.000
- Storage room