Spectrum of a non-equilibrium gas

- Detailed microphysics
- Energetic radiation & particles interact with gas
- Ejected electrons heats, excite & ionize gas
- Ionization drives chemistry
- Full spectrum predicted

 Detailed chemistry, grain physics

- Photon pumping
- Line absorption by continuous opacities

Paper 2, single triplet mixing

JARESOLVED He & EMISSION PREDICTIONS IN THE LOW-DENSITY LIMIT R. P. BAUMAN, R. L. PORTER, G. J. FRILAND, AND K. B. MACADAM

Bauman+05

Uncertainties

 $Uncertainties \ in \ theoretical \ He \ I \ emissivities: \ H \ II \ regions, \ primordial \ abundance \ and \ cosmological \ recombination$

R. L. Porter,^{1,2*} G. J. Ferland,^{1,2} K. B. MacAdam¹ and P. J. Storey³

Porter+09

Individual uncertainties

Conditions	Optimistic (per cent)	Pessimistic (per cent)	
Rad. recomb. coefficients (direct)			Optimistic case 2% error
n > = 5 and $L > 3$	0	0.1	Optimistic case 270 cmors
n > = 5 and $L < = 3$	0.01-0.7	≤4	Persimistic case 7% error
n < 5	0.01-0.7	≤4	i essimistic case 770 ciroi
E1 transition probabilities			
$n_0, n_1 < 10 \text{ and } L < 7$	0.01	0.2	
$n_0, n_1 < 10 \text{ and } L > = 7$	0	0.01	
$n_u > 10$, $n_1 < 5$ and $L_1 < = 2$	0.02	0.2	
$n_u > 10, L_u \ge 2$ and $L_l \ge 2$	0.6	4	
$n_u > 10, n_l < 10$ other	1	7	
$n_u, n_l > 10$	10	10	
Other transition probabilities			
$2p^{3}P_{1} - 1s^{1}S$	1	5	
$2p^{3}P_{2} - 1s^{1}S$	1	1	
$2s^3S - 1s^1S(2v)$	10	30	
2s3S - 1s1S (M1)	1	20	
2s ¹ S - 1s ¹ S	1	5	
All others	1	1	
Collisional de-excitation			
$n_{ij} < = 5$ and $n_{ij} < = 2$	10	30	
$\Delta n = 0$	20	30	
Otherwise	20	30	

12/30/10

