SONG – what have we learned?

Frank Grundahl

Stellar Astrophysics Centre
Department of Physics and Astronomy,
Aarhus University

Basic features of the SONG spectrograph:

- Wavelength coverage: 440 680nm
- 51 orders, full coverage below 530nm, 2048 pixels per order
- Resolution: 60-120.000 (2 pixel sampling at max resolution)
- Temperature stabilized to ~0.1C on short
- 0.5C stability on long time scales
- CCD readout time 2.8s
- Two available iodine cells
- ThAr calibration
- Not fiber-fed

One pixel corresponds to ~1km/s (depending on wavelength)

Guide limit: $V \sim 9.5$ (after upgrade in 2016)

Radial velocity precision

$$\sigma_{RV} = Const \times (S/N)^{-1} \times R^{-3/2} \times \Delta \lambda^{-3/2} \times (vsini) \times f(T_{eff})$$

 $f(T_{\it eff})$: factor depending on stellar line density

$$f(T_{\it eff}) \approx 1$$
 for solar type star

$$f(T_{eff}) \approx 3$$
 for A-type star

$$f(T_{eff}) \approx 0.5$$
 for M-type star

Capabilities:

Strengths:

- slowly rotating stars, SGB, RGB ..., short period planets
- the Sun
- fast reaction

Weaknesses:

- fast rotating stars
- main-sequence solar-like oscillators
- 1-year problem
- single-site
- 1m diameter!
- Close ~few arcsecond separation binaries.

The SONG data-flow:

- Afternoon: calibrations (bias, flat, ThAr, flat+lodine)
- Nighttime: Observations (Sun > 6deg. below horizon)
- Morning:

SONGwriter: (developed by Jens Jessen-Hansen)

- processing of calibration frames
- extraction of spectra

iSONG

- extraction of iodine velocities

SONGwriter – extracting the spectra

C++ code from Ritter et al. (2014, PASP, 126, 170)

Formalism developed by Piskunov & Valenti (2002, A&A, 385, 1095)

Set up for fully automated processing of the raw SONG spectra

Output:

- optimal extracted spectrum (~3min. per spectrum)
- simple summation of the spectrum (~2s per spectrum)
- blaze function
- ThAr calibration from nearest in time **before** science spectrum
- ThAr calibration from nearest in time after science spetrum

iSONG - "sad songs say so much"

iSONG calculates velocities based on the algorithms introduced by Butler et al. (1996):

Doppler shift

Convolution

$$I_{obs}(\lambda) = k T_{I2}(\lambda) I_S(\lambda + \Delta \lambda) \otimes IP$$

Observed stellar spectrum

lodine absorption spectrum

Intrinsic stellar spectrum

Instrument profile

lodine flat field

Arcturus + Iodine

Arcturus + Iodine + fringing

Short term precision is really good....

But..... now the "sad **song**s say so much" bit....

The 1-year problem is independent of:

- iodine cell is used (3 different)
- reduction code (two independent codes)
- its not an erroneous barycentric correction

March 2018: CCD rotated by 90 deg. The problem persists (lower amplitude?) Will know for sure in ~5 months.

Favorite candidate: the CCD

- but its not due to non-linearity
- perhaps Charge-Transfer Inefficiency

ThAr based velocities

- the spectrograph does not use an optical fiber
- → star moves on the slit → imperfect 'scrambling'
- Changes in pressure/temperature changes wavelength
- ThAr precision is (much) lower than for iodine, and depends heavily on how narrow the slit we use is.
- Special measures must be taken for getting ~100m/s long-term (use telluric lines).
- we still have A LOT to learn about optimizing the ThAr data.

What's next for the SONG spectrograph?

- find (and solve!) the '1-year-problem'
- fiber feed with fixed resolution for better ThAr stability
- upgrade with Fabry-Perot etalon?
- new detector (4K x 4K)
- improve blue throughput with new Coudé mirrors

.... and then we go down under

SONG South

11.2 hours difference

Telescopes

0.7m PlaneWave teleskope

3 telescopes feed one

spectrograph via octagonal fibers

Work in the lab. starts after this meeting.

All major components ordered or in-house.

