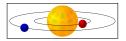
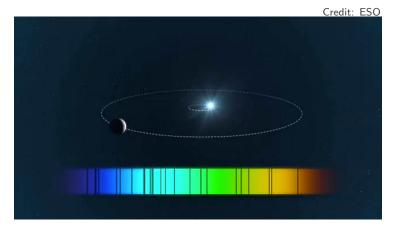
A SONG of seismic host stars


Mia Sloth Lundkvist

SONG workshop, Tenerife 24^{th} of October 2018


Zentrum für Astronomie der Universität Heidelberg, LSW

Stellar Astrophysics Centre, Aarhus University

Detecting exoplanets: Radial Velocities

Based on Fischer et al. (2016), Wright (2017), Santos & Buchhave (2017), Gaudi (2013) and Dumusque (2018).

Detection techniques: Radial Velocity

Size of the signal

$$K pprox \left(rac{2\pi G}{PM_*^2}
ight)^{1/3} rac{m_{
m p}\sin i}{\sqrt{1-e^2}} \, .$$

- $\bullet\,$ Jupiter around the Sun: $\sim 12~{\rm m/s.}$
- $\bullet\,$ Earth around the Sun: $\sim 9~{\rm cm/s}$ (currently undetectable).

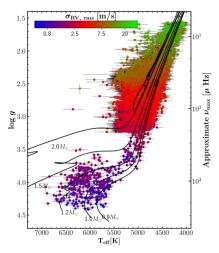
Detection techniques: Radial Velocity

Size of the signal

$$K pprox \left(rac{2\pi G}{PM_*^2}
ight)^{1/3} rac{m_{
m p}\sin i}{\sqrt{1-e^2}} \; .$$

- $\bullet\,$ Jupiter around the Sun: $\sim 12~{\rm m/s.}$
- $\bullet\,$ Earth around the Sun: $\sim 9~{\rm cm/s}$ (currently undetectable).
- \Rightarrow SONG can do close-in planets around bright stars.

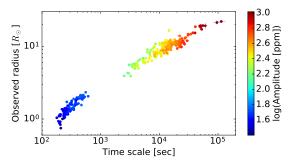
Challenges


RV jitter due to intrinsic stellar variability:

- p-mode oscillations
- Granulation
- Short-term activity (active regions)
- Long-term activity (magnetic cycles)

p-mode oscillations

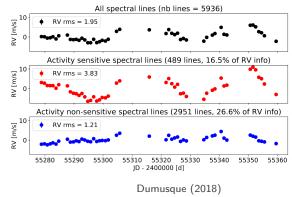
- $\bullet~$ Variations: $\sim 1~m/s$ on time scale of min-hours.
- Solutions:
 - Integrate for longer than typical oscillation period.
 - Model the jitter caused by the oscillations.



Yu et al. (2018)

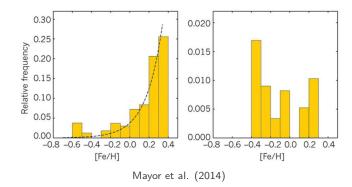
Granulation

- Variations: m/s on a time scale of min/hours to days.
- Solution: take several measurements per night of same target.


Activity

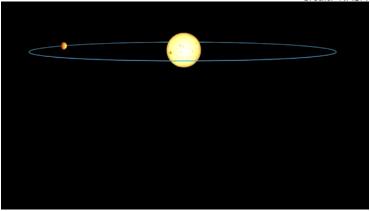
- Short-term activity variations: centroid shift of lines on a time scale of days to months.
- Long-term activity variations: amplitude and time scale can be similar to that of a Jovian planet (10 m/s over 100's of days to several years).
- Solutions:
 - Avoidance
 - Mitigation

Mitigation of RV jitter from activity


- Correlate RV's with activity indicators.
- Examine line shapes for evidence of non-centre-of-mass line shifts.
 - Line bisector.
 - Shape of individual lines.

Knowing the host star

• Spectra: $T_{\rm eff}$ and composition (metallicity).

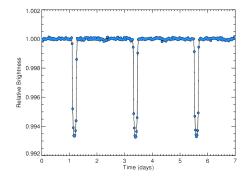

• Asteroseismology: *M*_{*}.

Detection techniques

Detecting exoplanets: Transits

Credit: NASA

Based on Gaudi (2013), Oshagh et al. (2013), Ricker et al. (2015), Borucki (2017), Cameron (2017), Rauer & Heras (2017), Barclay et al. (2018), Deeg & Alonso (2018) and Huang et al. (2018).


A SONG of seismic host stars 10 / 17

Detection techniques: Transits

Overview

$$\frac{\delta F}{F} \approx \left(\frac{R_p}{R_*}\right)^2 \; .$$

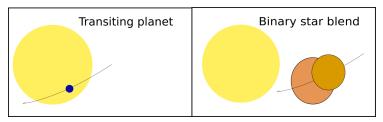
Credit: Andrew Vanderburg

A SONG of seismic host stars 11 / 17

Detection techniques: Transits

Overview

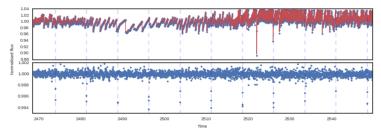
 $\frac{\delta F}{F} \approx \left(\frac{R_p}{R_*}\right)^2 .$ $SNR = \frac{(R_p/R_*)^2}{\sigma} .$ $\int_{0.994}^{0.994} \int_{0.994}^{0.994} \int_$


1.002

Credit: Andrew Vanderburg

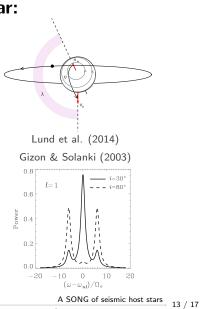
A SONG of seismic host stars 11 / 17

Challenges


- (Transit probability and temporal coverage)
- False positives
- Stellar activity (spots in transit).

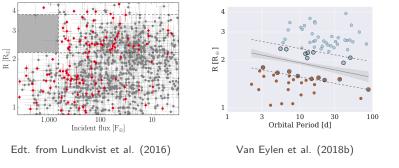
Challenges

- (Transit probability and temporal coverage)
- False positives
- Stellar activity (spots in transit).

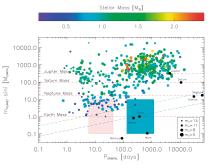


CS19 talk, Suzanne Aigrain

Knowing the host star: asteroseismology

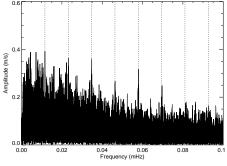

- R_{*} and age.
- $M_* \Rightarrow$ With both RV and transit detection we can determine $\bar{\rho}_{\rm p}$.
- Results from combining asteroseismology and exoplanet studies:
 - Spin-orbit angle
 - Precise parameters
 - Photo-evaporation

Knowing the host star: asteroseismology – photo-evaporation


- Precise R_p and F_p used to confirm absence of USP planets of sub-Neptune size (evaporation desert).
- Precise $R_{\rm p}$ used to determine slope of evaporation valley.

Role of SONG in light of TESS

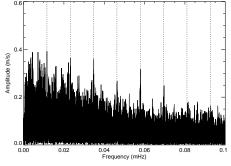
- Follow-up observations to confirm planets.
- Long time series for asteroseismology.
- Focus on precise stellar and planetary parameters of selected USP super-Earths/sub-Neptunes found by TESS.



González Hernández et al. (2018)

SONG and hot super-Earths

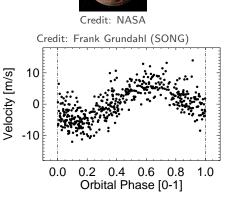
- SONG focuses on larger semiamplitudes (order 1 m/s).
- $M_* = 1 \text{ M}_{\odot}$ and $P = 2 \text{ days} = 0.006 \ \mu\text{Hz}.$
- Highest peak: 0.4 m/s.



 μ Her, credit: Hans Kjeldsen

SONG and hot super-Earths

- SONG focuses on larger semiamplitudes (order 1 m/s).
- $M_* = 1 \text{ M}_{\odot}$ and $P = 2 \text{ days} = 0.006 \ \mu\text{Hz}.$
- \bullet Highest peak: 0.4 $\rm m/s.$
- $\Rightarrow (m_{\rm p} \sin i)_{\rm min} \approx 0.8 \ {
 m M}_{\oplus}.$



 μ Her, credit: Hans Kjeldsen

SONG and hot super-Earths: 55 Cnc e

- Solar-like star.
- P = 0.74 days, $M_{\rm p} = 8.0 \text{ M}_{\oplus},$ $R_{\rm p} = 1.9 \text{ R}_{\oplus}$ Bourrier et al. (2018).
- Figure: \sim 10 nights over two months with SONG.

