Massive or not massive that is the question'

Seismology of planet hosting stars with SONG

Dennis Stello

My kitchen floor

Planets around `retired A-stars'

 10^{-5}

0

30 000

Planets around `retired A-stars'

6 000

Surface Temperature (Kelvin)

3 000

Planets around 'retired A-stars'

Solar-like oscillations in red giants

Observing oscillation modes

The most basic red giant seismology

One 'retired A-star' observed by Kepler

^a Our LTE synthesis modeling was performed with SME, with $\log g$ constrained using the Y² stellar evolution models. These models were also interpolated to estimate R_{\star} and M_{\star} .

b Based on $\Delta \nu = 15.4 \pm 0.2 \ \mu \text{Hz}$, $\nu_{\text{max}} = 229.8 \pm 6.0 \ \mu \text{Hz}$, and Equations 2 and 3

One 'retired A-star' observed by Kepler

^a Our LTE synthesis modeling was performed with SME, with $\log g$ constrained using the Y² stellar evolution models. These models were also interpolated to estimate R_{\star} and M_{\star} .

^b Based on $\Delta \nu = 15.4 \pm 0.2 \ \mu \text{Hz}$, $\nu_{\text{max}} = 229.8 \pm 6.0 \ \mu \text{Hz}$, and Equations 2 and 3

One 'retired A-star' observed by Kepler

^a Our LTE synthesis modeling was performed with SME, with $\log g$ constrained using the Y² stellar evolution models. These models were also interpolated to estimate R_{\star} and M_{\star} .

^b Based on $\Delta \nu = 15.4 \pm 0.2 \ \mu \text{Hz}$, $\nu_{\text{max}} = 229.8 \pm 6.0 \ \mu \text{Hz}$, and Equations 2 and 3

Use the SONG 'network'

Use the SONG `network'

Use the SONG 'network'

Our planet-hosting targets

We chose the brightest stars:

Our planet-hosting targets

 $Log(T_{eff})$

Star	$\log g$	$T_{ m eff}$	[Fe/H]	$v_{\text{max}} \cong \frac{M / M_*}{(R / R_*)^2 \sqrt{T_{\text{eff}} / T_{\text{eff},*}}} \times 3.1 \text{mHz}$				$ u_{ m max,pre}$	Λ ste $ u_{ m max,obs}$
(1)		$[K]^1$ (3)	[dex] ¹ (4)					[μHz] (9)	$[\mu \text{Hz}]^3$ (10)
ϵ Tau	2.62(15)	4746(70)	0.17(6)	22.24(25)	2.73(10)	11.8(5)	75.54(1.80)	64.8(5.4)	56.9(8.5)
β Gem	2.91(13)	4935(49)	0.09(4)	96.54(27)	2.08(9)	8.21(37)	36.50(1.69)	101(10)	84.5(12.7)
18 Del	3.08(10)	5076(38)	0.0(?)	13.28(31)	2.33(5)	7.51(34)	33.52(1.77)	137(12)	112(17)
γ Cep	3.10(27)	4764(122)	0.13(6)	70.91(40)	1.26(14)	4.88(22)	11.17(16)	177(24)	185(28)
HD 5608	3.25(16)	4911(51)	0.12(3)	17.74(40)	1.66(8)	4.89(23)	12.74(62)	228(23)	181(27)
$\kappa \operatorname{CrB}$	3.15(14)	4876(46)	0.13(3)	32.79(21)	1.58(8)	4.70(20)	11.20(17)	241(21)	213(32)
6 Lyn	3.16(5)	4978(18)	-0.13(2)	17.92(47)	1.82(13)	5.01(25)	13.74(73)	243(28)	183(27)
HD 210702	3.36(8)	5000(44)	0.04(3)	18.20(39)	1.71(6)	4.68(22)	12.33(52)	258(23)	223(33)

$$v_{\text{max}} \cong \frac{M / M_*}{(R / R_*)^2 \sqrt{T_{\text{eff}} / T_{\text{eff},*}}} \times 3.1 \text{mHz}$$

$$v_{\text{max}} \cong \frac{M / M_*}{(R / R_*)^2 \sqrt{T_{\text{eff}} / T_{\text{eff},*}}} \times 3.1 \text{mHz}$$

- If $T_{\rm eff}$ is 100-150K too high \Longrightarrow No $v_{\rm max}$ disagreement. But our $T_{\rm eff}$ agrees with interferometry (White et al.)
 - **→** So not very likely (but more interferometry please)

$$v_{\text{max}} \cong \frac{M / M_*}{(R / R_*)^2 \sqrt{T_{\text{eff}} / T_{\text{eff},*}}} \times 3.1 \text{mHz}$$

- If T_{eff} is 100-150K too high \Longrightarrow No v_{max} disagreement. But our T_{eff} agrees with interferometry (White et al.)
 - → So not very likely (but more interferometry please)
- [Fe/H] have only a small effect → Unlikely reason!

$$v_{\text{max}} \cong \frac{M/M_*}{(R/R_*)^2 \sqrt{T_{eff}/T_{eff,*}}} \times 3.1 \text{mHz}$$

- If T_{eff} is 100-150K too high \Longrightarrow No v_{max} disagreement. But our T_{eff} agrees with interferometry (White et al.)
 - **⇒** So not very likely (but more interferometry please)
- [Fe/H] have only a small effect → Unlikely reason!
- \bullet ν_{max} relation good to 3-4% (EBs, Gaulme et al. 2016, and interferometric test, Huber et al. 2012) Gaia DR2 seems to confirm this (Zinn et al. in prep).

$$v_{\text{max}} \cong \frac{M / M_*}{(R / R_*)^2 \sqrt{T_{eff} / T_{eff,*}}} \times 3.1 \text{mHz}$$

- If T_{eff} is 100-150K too high \Longrightarrow No v_{max} disagreement. But our T_{eff} agrees with interferometry (White et al.)
 - **⇒** So not very likely (but more interferometry please)
- [Fe/H] have only a small effect → Unlikely reason!
- \bullet ν_{max} relation good to 3-4% (EBs, Gaulme et al. 2016, and interferometric test, Huber et al. 2012) Gaia DR2 seems to confirm this (Zinn et al. in prep).
- Is the adopted spectroscopic mass 15-20% too high?

$$v_{\text{max}} \cong \frac{M/M_*}{(R/R_*)^2 \sqrt{T_{eff}/T_{eff,*}}} \times 3.1 \text{mHz}$$

- If T_{eff} is 100-150K too high \Longrightarrow No v_{max} disagreement. But our T_{eff} agrees with interferometry (White et al.)
 - **→** So not very likely (but more interferometry please)
- [Fe/H] have only a small effect → Unlikely reason!
- ν_{max} relation good to 3-4% (EBs, Gaulme et al. 2016, and interferometric test, Huber et al. 2012)
 Gaia DR2 seems to confirm this (Zinn et al. in prep).
- Is the adopted spectroscopic mass 15-20% too high?

Spectroscopic masses of planet-hosting retired A-stars' are 15-20% too high!

Stello et al. 2017

K2: A new opportunity catching retired A-stars

Campante et al. (2017); North et al. (2017):

K2: A new opportunity catching retired A-stars

Campante et al. (2017); North et al. (2017): **Conclusions: No significant offset between** 2014 Fie spectroscopic and seismic masses!!! Campaign 1 2015 Fields Campaign 16 2016 Fields Campaign 10 2017 Fields Campaign 14 Campaign 6 2018 Fields Campaign 5 Campaign 15 Campaign 2 Campaign 18 Campaign Campaign 13 Campaign 7 Campaign 4 Campaign 3 Campaign 8 Campaign 12

K2

Plot credit: Thomas North

K2+SONG

K2+SONG

K2+SONG

More SONG data: 2018 season

More SONG data: 2018 season

More SONG data: 2018 season

Summary

- $M_{\rm spec}$ of our retired A-star sample seems 15-20% too high (source: Exoplanet Orbit Database, mostly Mortier et al. 2013 for our sample).
- M_{spec} M_{seis} offset is mass dependent (only $M_{\text{spec}} > 1.6 M_{\text{sun}}$ discrepant).
- T_{eff} systematics does not seems like the obvious culprit...but more interferometry is welcomed.
- No indication that v_{max} relation is off by 15-20%.

Summary

- $M_{\rm spec}$ of our retired A-star sample seems 15-20% too high (source: Exoplanet Orbit Database, mostly Mortier et al. 2013 for our sample).
- M_{spec} M_{seis} offset is mass dependent (only $M_{\text{spec}} > 1.6 M_{\text{sun}}$ discrepant).
- T_{eff} systematics does not seems like the obvious culprit...but more interferometry is welcomed.
- No indication that v_{max} relation is off by 15-20%.

...but we are looking forward to TESS in 2019, and the new SONG-Australia node

Summary

- $M_{\rm spec}$ of our retired A-star sample seems 15-20% too high (source: Exoplanet Orbit Database, mostly Mortier et al. 2013 for our sample).
- M_{spec} M_{seis} offset is mass dependent (only $M_{\text{spec}} > 1.6 M_{\text{sun}}$ discrepant).
- T_{eff} systematics does not seems like the obvious culprit...but more interferometry is welcomed.
- No indication that v_{max} relation is off by 15-20%.

...but we are looking forward to TESS in 2019, and the new SONG-Australia node

Thank you!