BiSON 'mini' update

Yvonne Elsworth, **Steven Hale**, Bill Chaplin, Guy Davies, Rachel Howe

Existing Network

BISON

- International Network of 6 sites observing the Sun
- IAC is a key player (Pere)
- Aim to get near continuous coverage
- Many key results over decades
- Current focus for new data is on the solar cycle
- But instrumentation is old and begins to wear out

Very brief introduction to instrument

- Measurement of Doppler shift of Potassium Fraunhofer line at 770nm
- Tracks the Sun automatically
- Housed in a building either something like the Pyramid or a purpose built dome
- Philosophy still appropriate
- New and continuing science
- Want many more sites hence need to make cheaper
- ButOld equipment & new ideas

Strategy

- Keep the same basic measurement technique
- Reduce the size of the instrument
- Move to off the self components
- Remove the need for purpose built buildings
- Reduce the footprint
- Minimize cost
- This work forms the basis of PhD for Steven Hale and I am grateful to him for many of my data and drawings.

Begin at the beginning

LCD

- A telescope to collect enough power from Sun.
- Replace the direct feed with a long length of fibre
- Advantages
 - Allow separation of spectrometer and light collection optics
 - Fibre scrambling reduces sensitivity to guiding errors

BUT

- Need fibre that transmits working wavelength
- Image of Sun formed on fibre hence require relatively large diameter
- Has to be kept clean

Fibre Feed(technical)

- FT1000EMT multimode fibre from Thorlabs, standard off-the-shelf fibre with a silica core diameter of 1000 μm, a low hydroxyl content for low attenuation at 770nm of 7 dB km-1, and an NA of 0.39 producing an acceptance angle of approximately 22.9°.
- The minimum short term bend radius of the 1000 μ m is 50mm, the long term limit is 100mm
- Use fibres of different lengths depending on the need at the particular location (10m to 30m)
- The collector lens has a focal ratio of 1.2, 30mm focal length and a spot size of 0.6 mm (on a fibre of 1mm diameter). This is a smaller aperture than we normally use but we get compensation elsewhere.

Filters

- Isolate the working wavelength range to cut stray light and reduce thermal load
- Broadband filters + narrow-band interference filters.
- Can no longer get KG4 to remove the IR discontinued by Schott
- Astrodon in the United States have developed new filters for both the UVBRI and SDSS
- SDSS i'2 filter selected and an improvement over the original Schott KG4/RG9 filters
- We make no change to the choice of a 1.5nm interference filter centred on our working wavelength

Mounting for Input Optics

- No need for a big dome given separation of collection optics from spectrometer
- Use commercial mounts
- Two key issues to automate a COTS telescope mount are access to a communications protocol with a published application programming interface (API), and the ability to keep track of where the mount is pointing when power is lost
- Open-source and publish their control API
- Use microelectromechanical systems (MEMS), such as the accelerometers used to control screen orientation in devices such as smartphones and tablets, to track the position of a telescope

Recalibrate 3-axis magnetometer

- Work by Steve
- Note RHS on sphere
- Bottom line can get precision of a few degrees

Trial at Mount Wilson (California)

- September 2016
- One telescope for guiding and one for data
- Image won prize for Steve

 Guided with image on CCD with precision of about 6 arc sec (over many hours) in RA and DEC

Schematic Spectral Line

- Zeeman split the line with magnetic field
- Polarisation switching between the two sides of the Potassium line is fundamental to our design
- Resolution.....

Compare Potassium on ground to Potassium on Sun

 $900 \text{ mW m}^{-2} \text{ nm}^{-1}$ $0.029 \text{ mm}^2 \text{ sr}$ Red+Heat Filter 0.37 mW nm^{-1} 0.27 mW0.08 mW $0.39~\mathrm{mm}^2\,\mathrm{sr}$ $0.35 \text{ mm}^2 \text{ sr}$ $0.27 \text{ mm}^2 \text{ sr}$ 0.07 mWInterference Linear Fixed $\lambda/4$ Ring Magnets Filter Polariser Retarder B = 0.18TS:N $0.34~\mathrm{mW~nm^{-1}}$ $0.39 \text{ mm}^2 \text{ sr}$ LCD Rotator Fixed λ/4 Retarder Linear Polariser 1 nW

Polarisation Switching

- Traditionally use Pockels cells to switch from one side of line to other
- High switching rate and effective
- BUT.....
 - Expensive
 - Fragile
 - Small field of view
 - Limited life unless doubled up bespoke design
- Try liquid crystals

Liquid Crystals

- They do work but big down side is the switching rate.
- Pockels cells are fast
- Liquid crystal are much slower
- Why do we care?
- Atmosphere at 1Hz quite a bit of scintillation at 100Hz it is insignificant
- Whether it matters depends on other noise sources and science goal.

Scintillation noise

- Short term scintillation noise spectra with different dust levels.
- Measured by Steve at Izana

Distributed control

- Instead of one computer controlling everything we have distributed the control.
- Much easier to write the software and to make changes and updates.
- Raspberry Pi

BiSON-Izana - Use light from coelostat plus fibre to feed new mini spectrometer. Very good quality.

Solar cycle data – what will happen at the minimum?

Howe et al. 2017 'Sun in Transition'

SONG synergies

 Currently working on cycle dependence of numax values from solar SONG Doppler and BiSON Doppler data.

 Height-dependence/coherence work, and the BiSON paper that Mikkel Lund led, and the potential to utilize different combinations of spectral lines for SONG

Where we are with new setups

- Tenerife
- Carnarvon (WA)
- Mount Wilson

Skywatcher star discovery

Summary

- PhD Steve
- For the first time we have a proper analysis of where noise in the system comes from
- Considerable progress on new format
- More work needed for an enclosure
- Cells filled with Potassium and magnetic field provision still bespoke