Chinese SONG and new Site for future astronomy in China

Licai Deng

National Astronomical Observatories, CAS
Tenerife, Oct 2018

Contents

- Chinese SONG: Done and to be done
 - Brief report for 2013-1018
 - Issues with the system
- SONG and existing sites in the west
- Current site: protection vs fast development
- The need for new sites: Chinese mega-science plans
- Site qualification at LENGHU.

Current SONG @Delingha

- Shutted done spring 2018 for a major maintenance after about 132hr 'manned' observations mainly in 2017
 - Removing secondary unit, recoating and replace the support (hexapod -> linear focusing only)
 - Re-cabling the system (which has been a mess even for regular operations)
 - Realigning all the optics
 - Sorting out solar fiber feed
 - Maintenance of the spectrograph (the best part of the system)
- Still working on most of above tasks

Secondary support

Delingha site quality keep decaying since 2014

- The city is brightening up exponentially at night (local development and touristic activities
- Direct light pollution reaching the Zenith at the site (shooting entertainment laser beams)
- Agricultural activities reaches 10 meter away from our facility
- Abnormal climate change, rain like in Yangzi area
- But these are not the reason for relocating SONG

Precipitation: DLH vs LH

New site, opportunity for SONG

- 12 meter LOT project
- 6.5 meter, side project of Tianqin, a G-wave detection mega-science project by Sunyisian' University
- Local government at Lenghu is promoting development plan:
 - using Starry sky and spectacular landscape as the main attractions
 - Night sky protection will be enforced at the whole district (by a law - to be approved)
 - Providing funding for site survey and relocating SONG!

Site resource world wide

Low cloud coverage, low atmospheric turbulence, low extinction

Global satellite view

Marc Sarazin et al. 2006

FriOWL: A Site Selection Tool for the E-ELT Project

Overlay distinguishing areas providing high summits and low cloudiness as well as low PWV, <u>2.5 degree square pixels</u>.

Sand problem

Marc Sarazin et al. 2006

FriOWL: A Site Selection Tool for the E-ELT Project

Mean aerosol index as measured by TOMS UV satellite for the period 1980-2002.

Geographical Information Systems (GIS)

Why going on to the plateau?

国内各台址(含候选)云量比较

气象卫星云量统计 (2008-2016)

感谢国家天文台赵永恒

气象卫星云量统计 (2008-2016)

感谢国家天文台赵永恒

10 year meteorological data

- > 3 local weather station LH, DFS, MHH
- Each has temperature, humidity, wind speed and direction
- Statistical analysis
- ➤ Wind rose, 10min average

WS @Lenghu: temperature

LH: Max = 34.9 min = -30.9 median = 4.9 mean = 4.1

WS @Lenghu: Relative Humidity

LH: Max = 96 min = 2 median = 27 mean = 29

WS @Lenghu: Humidity distribution

LH: median = 27

WS @Lenghu: Wind speed

LH: median = 2.7 max = 21.4

WS @Lenghu: Wind Rose

Following Delingha (SONG site), to be done:

- Historic weather record
- Weather data from stations
- Sky background stats
- Av. Annual Cloudiness (observing time assessment)
- Seeing (making sense only at the actual site)
- Higher standard for Large T.

Site qualification measures

- Power: Solar panels + inverter 3KW X2, good for all instruments including DIMM, regular running start Feb.
- All sky cam: regular operation only after Mar.
- Sky brightness (SQM)
- Weather station (Wind speed and direction, pressure, temperature, humidity)
- Other instruments: Mass-DIMM, SNIDAR

Sky quality assessment by SQM

SQM facts:

- Wide band (~B+V), wide sampling angle (15°/30°), output mag/seqdeg (well calibrated), accr.0.01m
- Industrial product (identical/stable/durable/ data recording)
- Sky brightness is very sensitive to cloud passage!
- Time series data is good for night quality analysis, basics available from Unihedron's homepage

Sky quality assessment by SQM

- Slope $\frac{\delta M_{SQM}}{\delta t}$ at each data points
- Smoothing (average) with a 15min window (SQM sampling rate 1/min), corresponding to median characteristic timescale of cloud passage
- Reconstruct smoothed data using an smoothed slope in a window of 15min or smaller
- Calculate the residual at each data points (between twilights), giving a quality index

Seeing at submit C SST on 20180922

New sites proposed for future plans

Precipitation: DLH vs LH

Lenghu (upper) vs Muztaga (lower) Sky quality stat

SONG (China)

- Will be (again) in test mode soon, in Delingha
- Need at least a year for construction
- Need a summer season for relocating and another year for alignment, test