Imaging stellar surfaces: prospects with the SONG

Stellar surface structures

temperature

VS

chemical spots

- Cool stars with outer convective envelopes
- Caused by dynamo created magnetic fields

Kochukhov et al. 2007

- Hot stars with radiative outer layers and stable atmospheres
- Chemical stratification due to gravitational settling and radiative levitation
- Magnetic fields collect some elements as surface spots

Mapping starspots with Doppler imaging

Spectra: Temperature spots Chemical spots

Spectropolarimetry: Magnetic fields

From Oleg Kochukhov

Limitations of Doppler imaging

Instrumentation

- High spectral resolution
- High signal-to-noise ratio
- Ability to get good phase coverage

Object

- Good phase coverage (=convenient rotation period)
- Rapid rotation (vsini > ~15km/s)
- Not too long exposure time (bright)
- Something to map!

Cannot be used for studying solar-type spot groups

Examples of DI results

EK Dra with very high resolution

Järvinen et al. 2018, in press

- EK Dra:
 - Young Sun: G1.5V, ~70Myrs
 - Rapid rotator: P=2.6d, vsini=17km/s
- Observed with PEPSI high resolution mode R=250,000

EK Dra spots vs sunspots

Is it possible to directly image starspots?

- Unfortunately most active stars are apparently small, and spots naturally even much smaller
- But one can try to use nearinfrared interferometry

ESO VLTI: resolution ~3mas **CHARA** array: resolution ~0.5mas

> Centre for High Angular Resolution Astronomy

ζ And first attempts

Doppler imaging: Kővári & Korhonen

Interferometry: Roettenbacher & Monnier

ζ And attempt number N

ζ Andromedae:

- K giant
- 4600 K, R=15Rsolar
- RS CVn binary
- Starting to fill Roche lobe

Intensity image at H band using MIRC and all 6 CHARA telescopes

Roettenbacher, Monnier, Korhonen et al. 2016, Nature

Spot hemispheres

- Persistent polar spot
 Polar spots are real
- The transient spots in 2011 are concentrated to the 'northern' hemisphere and in 2013 to the 'southern' hemisphere

Roettenbacher, Monnier, Korhonen, et al. 2016, Nature

Comparing Doppler and interferometric imaging

Roettenbacher, Monnier, Korhonen et al. 2017

Chemical spots on HgMn star α And

"This first definitively identified spectrum variation in any mercury-manganese star is not due to the orbital motion of the companion. Rather, the variation is produced by the combination of the 2.38236 day period of rotation of the primary that we determined and a nonuniform surface distribution of mercury that is concentrated in its equatorial region." (Adelman et al. 2002)

Long-term observations of HgMn star HD11753

All the data from CORALIE spectrograph at La Silla

Korhonen et al. 2013

Temporal evolution of spots in HgMn stars

- Slow temporal evolution discovered in α And by Kochukhov et al. (2007)
- Fast evolution discovered in HD 11753 by Briquet et al. (2010)
- Reliability studied in more detail by Korhonen et al. (2013)

α And with SONG

Possible SONG targets for temperature spots:

- zeta And, V=4.1, P=17.8d, vsini=41.4 km/s
- sigma Gem, V=4.3, P=19.6d, vsini=27.5 km/s
- 31 Com, V=4.9, P=6.8d, vsini=67km/s

And for HgMn stars:

- alpha And, V=2.1, P=2.4d
- 66 Eri, V=5.1, P=5.5d
- HD224926, V=5.1, P=3.2d

Outlook with SONG

Strengths of SONG

- Excellent timing of the observations enables mapping spot evolution
 - surface differential rotation and meridional flows in cool stars
 - evolution timescales of spots on HgMn stars
- High spectral resolution enables studying possible starspot penumbra

Contemporaneous observations

- Combined with CHARA for detailed studies of stellar surfaces
- Combined with TESS, e.g., photometric variability of HgMn stars

