Accuracy and Precision of industrial stellar abundances

Paula Jofré
Nucleo de Astronomia
Universidad Diego Portales
Chile

Stellar spectroscopists have the "best data" about stars - know "the best" about them

Stellar spectroscopists have the "best data" about stars - know "the best" about them

We suffer from the "too much information effect"

Radial velocities

• Atmospheric physics

Chemical makeup

- Radial velocities
 - Travel velocities across the Galaxy

Variations due to oscillations or presence of companions

SONG, HARPS, PFS...

• Atmospheric physics

Chemical makeup

- Radial velocities
 - Travel velocities across the Galaxy

- Variations due to oscillations or presence of companions
- Atmospheric physics
 - Radiative transfer and line formation
 - Turbulent motions, magnetohydrodynamics
- Chemical makeup

stellar spectra

- Radial velocities
 - Travel velocities across the Galaxy

- Variations due to oscillations or presence of companions
- Atmospheric physics
 - Radiative transfer and line formation
 - Turbulent motions, magnetohydrodynamics
- Chemical makeup
 - Chemical anomalies
 - Stellar DNA

stellar spectra

- Radial velocities
 - Travel velocities across the Galaxy

- Variations due to oscillations or presence of companions
- Atmospheric physics
 - Radiative transfer and line formation
 - Turbulent motions, magnetohydrodynamics
- Chemical makeup
 - Chemical anomalies
 - Stellar DNA

- Radial velocities
 - Travel velocities across the Galaxy

- Variations due to oscillations or presence of companions
- Atmospheric physics
 - Radiative transfer and line formation
 - Turbulent motions, magnetohydrodynamics
- Chemical makeup
 - Chemical anomalies

Stellar DNA

stellar DNA

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

La

Ac

Th

232.038

Pa

Protactinium

stellar DNA

Elements potentially detected in spectroscopic surveys of the Milky Way

Eu

Am

Pm

144.913

Np

Nd

144.243

U

Uranium

Sm

Pu

© 2017 Todd Helmenstine

Lu

Lr

103

Ho

Es

Er

Erbium

Fm

Tm

Md

Yb

No

Nobelium

Dу

Cf

Californium

Tb

Bk

Berkelium

Gd

Cm

Accuracy and precision of industrial stellar abundances

Paula Jofré,¹ Ulrike Heiter,² and Caroline Soubiran³

¹Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Av. Ejército 441, Santiago, Chile; email: paula.jofre@mail.udp.cl

²Observational Astrophysics, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden

³Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, F-33615, Pessac, France

Mg abundances in stars

Bergemann et al 2017

When many lines are available, we could get ~accurate abundances in standard 1D-lte

Mg abundances in stars

Problem is that sometimes (actually almost always) there are no good lines

Bergemann et al 2017

Classical methods

"Modern" methods

EWs / Syntheses

data-driven/neural networks

Line list - oscillator strengths

Heiter et al (in prep)

For GES, flagging system of all identified lines

Heiter et al (in prep)

For GES, flagging system of all identified lines

Line list - oscillator strengths

"Astrophysical calibration"
Fit log(gf) for fixed abundances
in benchmark stars

Done in surveys like

APOGEE since IR lines would all have
flag N (in GES system)

This is other excellent pain killer to
improve precision

Line selection

Expected MW trend

Line selection

Line selection and effect on methods

GES comparison of 5 methods analysing Ca of UVES spectra

Ca I-line selection in the Gaia-ESO survey. Colour coding represents the number of stars for which an abundance was determined for each line by different analysis groups participating in the internal data release 5. Based on data provided by R. Smiljanic (priv. comm.).

Special Request

Delivering Your Happiness

Special Request

Delivering Your Happiness

Effective temperature

Special Request

Delivering Your Happiness

Abundances are affected, especially those measured from neutral lines

Roederer et al 2014

Effective temperature

Excitation balance

Interferometry

At least 4 different current popular photometric relations using different colours, bolometric corrections, and extinction laws (100 K)

Chemical anomalies?

IRFM

Blackwell & Shallis 1977: Near black body in Infrared

Happiness

H lines

Effective temperature

Excitation balance

At least 4 different current popular photometric relations using different colours, bolometric corrections, and extinction laws (100 K)

Chemical anomalies?

IRFM

Blackwell & Shallis 1977: Near black body in Infrared

No abundance vs excitation potential is found.

Teff is subject to line selection (30 K - too many lines) and LTE (50 K-Bensby et al 2014).

Excitation balance

Boltzmann:

line strength of neutrals is dependent on

- 1) the temperature of the atmosphere layer where absorption is produced and
- 2) Excitation state of the atom.

Effective temperature

Excitation balance

Special

IRFM

Delivering Your Happiness

H lines

Effective temperature

Excitation balance

$$T_{\text{eff}} = \left(\frac{F_{\text{bol}}}{\sigma}\right)^{0.25} (0.5 \,\theta_{\text{LD}})^{-0.5}.$$

Special

IRFM

Delivering Your Happiness

H lines

Effective temperature

Tim White's kingdom!
Not really one with fairy tales!

Interferome

$$T_{\text{eff}} = \left(\frac{F_{\text{bol}}}{\sigma}\right)^{0.25} (0.5 \,\theta_{\text{LD}})^{-0.5}.$$

Effective temperature

Gaia FGK benchmark stars

Delivering Your Happiness

H lines

Tim White's kingdom!
Not really one with fairy tales!

Interferome

$$T_{\text{eff}} = \left(\frac{F_{\text{bol}}}{\sigma}\right)^{0.25} (0.5 \,\theta_{\text{LD}})^{-0.5}.$$

My kingdom - also not really of fairy tales

Gaia FGK benchmark stars

Tim White's kingdom!
Not really one with fairy tales!

Interferome

 $(0.5 \theta_{\rm LD})^{-0.5}$.

Hawkins et al 2016

Gaia FGK benchmark stars

My kingdom - als really of fairy ta

Ages

Sorry, don't think this special request delivers happiness...

LINK BETWEEN THE "BROAD SWEEPER" AND THE "ULTIMATE REFINER"

Gaia benchmarks

clusters

seismic fields

Hipparcos & Gaia

Chemical elements are made in stars

Chemical elements are made in stars

Stellar generations inherit the chemical makeup of previous generations

Chemical elements are made in stars

Stellar generations inherit the chemical makeup of previous generations

Galactic
archaeology is
about using lowmass stars's ages and
chemical elements to
trace the evolution
of the MW

We

stellar DNA

A fun "interdisciplinary" discussion with a biological anthropologist over many dinners at King's Cambridge

Chemical elements are made in stars

Stellar
generations
inherit the chemical
makeup of previous
generations

Galactic
archaeology is
about using lowmass stars's ages and
chemical elements to
trace the evolution
of the MW

We

stellar DNA

A fun "interdisciplinary" discussion with a biological anthropologist over many dinners at King's Cambridge

Chemical elements are made in stars

Stellar
generations
inherit the chemical
makeup of previous
generations

Galactic
archaeology is
about using lowmass stars's ages and
chemical elements to
trace the evolution
of the MW

Science News
Scientist-to-Watch 2018

This method works with putting closest stars in neighbouring branches

Jofre et al 2017

Only possible (now) with the best-of-the-best data (SONG would do?)

This method works with putting closest stars in neighbouring branches

Jofre et al 2017

-22 solar twins of Nissen2015/16
 -3 populations in the Solar Neighbourhood (different in age)
 -each has different branch length - age relation (chemical evolution rate)
 - First proof of concept we can use phylogenetic trees to reconstruct history of stars

Nucleo de Astronomia, UDP

- Chile's astronomy is perhaps the community that is growing the fastest no wonder, so are the facilities that are being installed in the dessert. Chile is investing in the development of astronomy like few countries.
- Astronomy Nucleus, UDP, Santiago de Chile started 2013 I joined as 5th Faculty in 2017 (the stellar/galactic person), now we are 7 faculty + 6 post-docs, 1 outreach coordinator.
 - 1 more faculty to join (and search) in next 2 years.
 - Next year PhD program starting. Stay tuned and encourage adventurous candidates to come, we trust we have all necessary stuff to form young scientists!
 - Telescopes, many funding programmes (ESO-Chile, ALMA/CAS/ECOS/ Belgium/STINT/Gemini...-Conicyt, Fondecyt, etc), international networks, etc
 - We are a new group of scientists, with new ideas and ambitions we've collected from our experiences abroad. Chile is liking it, I hope the rest does it too!