1st workshop on Science with SONG: 4 more years

Exoplanets orbiting G and K giant stars

Paul Heeren, Sabine Reffert, Simon Albrecht, Trifon Trifonov, Ka Ho Wong, Man Hoi Lee, Andreas Quirrenbach

Why K/G giant stars?

- Use RV method on more massive stars
- Examine the late evolutionary stages of planetary systems
- Put further constraints on planet occurrence rates

Exoplanet.eu

Why K/G giant stars?

- Use RV method on more massive stars
- Examine the late evolutionary stages of planetary systems
- Put further constraints on planet occurrence rates

\Rightarrow Where are the close-in planets at high stellar masses?

Exoplanet.eu

RV survey for exoplanets

- 373 G/K giant stars
- 1999 - 2012: RV measurements at Lick Observatory
- Precision: 4-8 m/s
- Found 15 planets so far +20 candidates
- Some planets/candidates in multiplanetary/binary systems

Orbit evolution

Credits: Vera Wolthoff (LSW)

Planet occurrence rate

Reffert et al. (2015)

Binary systems with planets

If confirmed:

Some of the closest binaries known to date to host planets

Test stone for planet formation theories

But:

Longer survey duration!

Gray (2015)

Binary systems with planets

If confirmed:
 Some of the closest binaries known to date to host planets!

Test stone for planet formation theories

But:

Need longer survey duration!

Binary systems with planets

If confirmed:
 Some of the closest binaries known to date to host planets!

Test stone for planet formation theories

But:

Need longer survey duration!

ε Cyg: A very eccentric binary!

Binary period: 55.6 yr

$$
e=0.93 \pm 10^{-4}
$$

With $M_{A}=1.2 \mathrm{M}_{\text {sol }}$: $M_{B} \operatorname{sini} \approx 0.3 \mathrm{M}_{\text {sol }}$

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{B}} \approx 16.7 \mathrm{AU} \\
& \mathrm{r}_{\min } \approx 1.2 \mathrm{AU} \\
& \mathrm{r}_{\max } \approx 32.2 \mathrm{AU}
\end{aligned}
$$

ε Cyg: A second companion?

Periodogram of residuals of binary fit

Two peaks:
~ 282 d
~ 291 d

ε Cyg: A second companion?

Planet period: 280.7 d

$$
e \approx 0.12
$$

$M_{b} \sin i \approx 0.84 M_{J}$

$$
a_{b} \approx 0.89 \mathrm{AU}
$$

ε Cyg: A second companion?

Planet period: 280.7 d

$$
e \approx 0.12
$$

$M_{b} \operatorname{sini} \approx 0.84 M_{J}$

$$
a_{b} \approx 0.89 \mathrm{AU}
$$

ε Cyg: A second companion?

Would it be stable?

ε Cyg: A second companion, or...

...stellar oscillations due to heartbeat phenomenon?
\Rightarrow very unlikely: $r_{\text {min }} / R_{*} \approx 24>10$
...oscillatory convective modes (Saio et al., 2015)?
\Rightarrow possibly not: $\mathrm{L}_{*} \approx 62 \mathrm{~L}_{\text {sol }}$
...instrumental systematics?
\Rightarrow amplitude too large
...stellar rotation + activity?
\Rightarrow nothing visible in photometry

Saio et al. (2015)

Binary + planet

$P_{1} \approx 38 \pm 5.5 \mathrm{yr}$ $P_{2}=637 \mathrm{~d}$

How long is the binary's period?

Two close-by planets

$P_{1} \approx 740 \mathrm{~d}$
 $P_{2} \approx 1000 \mathrm{~d}$

$M_{1} \operatorname{sini} \approx 2.0 \mathrm{M}_{\mathrm{J}}$
$M_{2} \operatorname{sini} \approx 0.9 M_{J}$

What are the system dynamics?

A densely packed quadruplet

$$
\begin{array}{ll}
P_{1} \approx 16 \mathrm{yr} & P_{2} \approx 945 \mathrm{~d} \\
P_{3} \approx 652 \mathrm{~d} & P_{4} \approx 576 \mathrm{~d}
\end{array}
$$

$M_{1} \operatorname{sini} \approx 42 M_{J}$
$M_{2,3,4} \operatorname{sini}>1 M_{J}$
How long is the binary's period?
What are the system dynamics?

Summary \& Conclusions

Planets around K/G giants

Planets in binaries

Multiplanetary systems

Evolution of planetary systems

Planet formation

Orbit dynamics
\Rightarrow Longer survey duration necessary
\Rightarrow High-precision RV measurements $\&$ SONG
\Rightarrow Data needs to be reliable

Summary \& Conclusions

Planets around K/G giants

Planets in binaries

Multiplanetary systems

Evolution of planetary systems

Planet formation

Orbit dynamics
\Rightarrow Longer survey duration necessary
\Rightarrow High-precision RV measurements $\}$ SONG
\Rightarrow Data needs to be reliable

ε Cyg: Are the signals real?

Following R. Dawson \& D. Fabrycky (2010)

A densely packed quadruplet

ε Cyg: Are the signals real?

Following R. Dawson \& D. Fabrycky (2010)

ε Cyg: Are the signals real?

Following
R. Dawson \&
D. Fabrycky (2010)

Both signals most probably are "real"!

Norm. LS-P. (Window) HIP102488_bin_mult1

