IRAM 30m Front-ends Present and future # Current instrument configuration at 30m There are two heterodyne receivers and one continuum camera installed at the 30m, in the RX cabin (Nasmyth focus – cabin remains static). #### **EMIR** Multicolor RX HERA Multipixel RX #### NIKA2 Continuum camera Cabin optics is mostly flat mirrors, with M3 corotating with Elevation of the telescope. #### **EMIR:** the Eight Mlxer Receiver Four color single pixel dual pol 2SB RX. | EMIR | Alias | Sky Frequency | Trx | mixer | Pol | IF width | lmage | Cor | mbinati | ons | Trx | LO | Damaulia | |--------------|------------|----------------------------|-----|-------|-----|----------|---------|------|---------|------|-----|---------|-----------| | band | Allas | GHz | K | type | POI | GHz | Rej. dB | E0/2 | E1/3 | E0/1 | K | type | Remarks | | E0 / | Band | 73-117 | | | | | | | | | | GUNN | | | E090 | Daniu
1 | LSB: 73-97 (102) | 50 | 2SB | H/V | 8 | >10 | X | | X | 65 | + PLL | | | L030 | ' | USB: 89-117 | | | | | | | | | | | | | E1 / | Band | 125-184 | 50 | 2SB | H/V | | >10 | | Х | Х | 65 | GUNN | | | E150 | 2 | LSB: 125-168 | | | | N 8 | | | | | | + PLL | | | L 130 | | USB: 141-184 | | | | | | | | | | | | | E2 | Band | 202-274 | 80 | | H/V | 8 | >10 | | | | | GUNN | | | E230 | 3 | LSB: 202 (LO) - 263.5 (LI) | | 2SB | | | | X | | | 95 | + PLL | | | L230 | , | USB: 217 (UI) - 274 (UO) | | | | | | | | | | | | | E3 /
E330 | Band | 277-350 (375) | 80 | | H/V | | >10 | × | × | | | YIG | ALMA Band | | | 4 | LSB: 277-335 | | 2SB | | 8 | | | | | 95 | + PLL | | | | 4 | USB: 293-350 (375) | | | | | | | | | | 7 mixer | | Full details: https://publicwiki.iram.es/EmirforAstronomers - EMIR is an IRAM workhorse. - In continuous service since 2011* (with upgrades) - There are plans for upgrades on EMIR key electronics, control computer and optics. #### **EMIR:** the Eight Mlxer Receiver Four color single pixel dual pol 2SB RX. Skyy(A) | Skyy(B) Of the total 16 x (4-12 GHz) IF (or 32 x 4GHz BW IF) only 8 x 4 GHz BW are carried out down to backends (cables \sim 100m) Optical combinations (table previous page) #### **HERA: HEterodyne Receiver Array** 9-pixel dual pol heterodyne RX at 230 GHz #### NIKA2: New IRAM KID Arrays 2 Multicolor Kinetic Inductance Detector based camera - KID: Resonant (R)LC networks - NIKA2 is another workhorse, in operations since 2017 - Many upgrades have been implemented since → a good example of constant improvement of a system (next one for Feb-March 2024) ## NIKA2: New IRAM KID Arrays 2 Multicolor Kinetic Inductance Detector based camera ~ 2,3 m Wire grid polarizer for 1.15 mm band at 150mK ol /)px GHz 2 PT + He3/He4 dilution cooler 260 GHz / H-Pol / 1140px # iram What comes next? The MRT (30m telescope) is a real pioneer of the radioastronomy We have been discussing for a long time about making a major upgrade in the instrumentation. In fact our telescope is being upgraded (more on M. Castillo and S. Sanchez presentations) We envision long term plans for the whole observatory, on a coordinated effort: IRAM30-30, IRAM30-40? (still to be discussed) #### Future Multibeam: a very brief summary High stability dual color dual pol 2SB extented IF coaligned multibeam with pixel derotation and high spectroscopic resolution... - Long standing ambition / project (> 12 years) - In the meantime, key required technology is being explored and developed, and "proofs of concepts" have been built. - Resources have been focused on NOEMA instrumentation direct sinergy ### Multibeam: Desgin key concepts to account for #### Modular - 2 cryostats with common warm optics. Central pixels coaligned: LFA & HFA. - Common Hot / Cold loads (cold load @77K with Stirling cooler) - Modular Bias and control electronics - Modular mounting of mixers / HEMTs (blocks) - (Warm) Optics as an assembly group with references. - IF modules and backends (FFTs) in the telescope (even in the cabin) #### **De-rotation of pixels** - K-mirror close to Focal Plane and limited travel < 180 Deg phys. - Compact / Removable / horizontal mounting - SW de-rotation? #### Easily maintainable - Cryostats bolted to the floor on rails \rightarrow optics and alingment - Coldheads mounted vertically \rightarrow removable with the crane - Electronics mounted in subracks → replacement and upgrades #### **Flexible** • Being modular, means easier upgrades of electronics and control computer ## Multibeam: updated concept Based on the 2016 concept, a de-rotator can be included # iram #### Multibeam: some design challenges - Dual Pol + 2SB + Extended IF (>4-12) - Development of HEMTs (?) and SIS (demonstrators experience) - Development of OMTs - LO power and distribution - Solid state chains with enough power + distribution modules - Base synthesizers with YIG filters - Heat dissipation (cryogenics) - Cryostat, cooling machine - windows / filters - IF signals and sub-bands - Type and amount of Backends to cover all sub-bands (FFTs?) - Different operational modes: LFA, HFA, LFA + HFA, LFAc + HFAc - FE control system - Cabling and routing (\rightarrow 32GHz / pixel or 8 x 4GHz BW / Pixel) - Coordination of different teams: IRAM-ES, IRAM-FR, Partners, Externals - Short time scale → target 3 years. ## Functional Proofs of concepts (part of Aethra WP5.1) ## Functional Proofs of concepts (part of Aethra WP5.1) October 7th 2022 SAC meeting 2022 - 29 ## Multibeam: HFA based on concept 7x1 SIS demonstrator Optics design by Anne-Laure Fontana – Mixer design by Doris Maier ## Multibeam: LFA based on concept 3x1 HEMT demonstrator Beam separation on the sky: ~ 2FWHM -> 48" Optics design by Anne-Laure Fontana – Mixer design by Doris Maier ## Multibeam: HFA + LFA based on demonstrators Specs: goals and baseline | | | HFA 1mm | LFA 3mm | | | | |---|---|-------------|--------------------|---|-------------|---------| | Feature | Goal | Baseline | | Goal | Baseline | | | Frequency range | 196 280 | 200 276 | GHz | 67 117 | 72 116.5 | GHz | | LO range | 208 268 | 212 264 | GHz | 79 105 | 84 104.5 | GHz | | IF range Mixer topology TRX for 80% of the RF band TRX at any frequency Spread in Trec between pixels (%) Sideband ratio Spectroscopic stability with 1 MHz BW (Allan time) Total power stability with 1 MHz BW (Allan time) Total power stability for 4-12 GHz IF Backend resolution Array layout Pixel separation (physical) On-sky separation (@ lowest f HPBW beam size (high Edge taper Alingment accuracy betw Co-alingment between sub | 4 12 | 4 12 | GHz | ▼ | 4 12 | GHz | | Mixer topology | 2 | SB Dual Pol | | csi F | SB Dual Po | | | TRX for 80% of the RF band | | ≤ 83 | ~ ~e' | | 50 | K (SSB) | | TRX at any frequency | | ≤ 130 | 1 54 | 1 / | ≤ 70 | K (SSB) | | Spread in Trec between pixels (%) | ≤ 10 | cin |), ¹⁰ C |) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ≤ 30 | % | | Sideband ratio | < -20 | £ 411. | IKSKI | < -20 | < -10 | dB | | Spectroscopic stability with 1 MHz BW (Allan time) | ≥ 20 | УO, Ч | 0/1 | ≥ 120 | ≥ 100 | S | | Total power stability with 1 MHz BW (Allan time) | 1,10 | 1, - 14 | S | ≥ 20 | ≥ 10 | S | | Total power stability for 4-12 GHz IF | ·2011 | | 100s | 4x10- | 7 A.V. up t | p 100s | | Total power stability for 4-12 GHz IF | X111 | op tp | 300s | 3x10- | 6 A.V. up t | p 300s | | Backend resolution |), ² 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, | ≥ 64 | KHz | ≥ 32 | ≥ 64 | KHz | | Array layout | e0/ | 7 x 7 | | | 5 x 5 | - | | Pixel separation (physical) | W. | 25 | mm | | 44 | mm | | On-sky separation (@ lowest 5 | | > 2 | HPBW | | > 2 | HPBW | | HPBW beam size (high | 9 12 | 9 12 | II | 21 34 | 21 34 | п | | Edge taper | 14 | 14 | dB | 14 | 14 | dB | | Alingment accuracy betw | ≤ 0.5 | ≤ 1 | 11 | ≤ 0.5 | ≤ 1 | П | | Co-alingment between sub // pixels (on sky) | ≤ 1 | ≤ 2 | II | ≤ 1 | ≤ 2 | II | | Co-alingment between sub-a ys for central pix (on sky) | ≤ 0.5 | ≤ 1 | II . | ≤ 0.5 | ≤ 1 | II . | | Main beam efficiencies | ≥ 0.60 | ≥ 0.53 | | ≥ 0.80 | ≥ 0.75 | | | Aperture efficiency | ≥ 0.50 | ≥ 0.41 | | ≥ 0.65 | ≥ 0.60 | | | Forward efficiency | ≥ 0.95 | ≥ 0.88 | | ≥ 0.98 | ≥ 0.95 | | #### Multibeam: Work breakdown structure Budget control WP-1150 ## Multibeam: WBS: WP-1000 | Scheduling and Project management Project management with the paper pape | | | | Pr | oject Manageme
wp-1000 | nt | | | | |--|-----------------------|--------------------------|-----------|---------------------------------|---------------------------|------------------|-----------------------------------|----------------------|----------------------| | Schedule (Gantt) WP-110 WP-120 WP-1310 WP-1310 WP-1410 WP-1510 | Project
management | Requirements and drivers | documents | documents | Logistics | compliance | commissioning plan and procedures | Maintenability | Meetings and reviews | | FTE alocation WP-120 Science goals and metrics WP-120 WP-1320 WP-1420 WP-1520 WP-1520 WP-1520 WP-1620 WP-1620 WP-1620 WP-1620 WP-1820 WP-1920 Resource allocation WP-130 WP-130 WP-1430 Telescope interfacing - Electrical and references WP-130 WP-1430 WP-1430 WP-1630 WP-1 | · · | | | interface | special
requirements | preparations | compliance matrix / checklist | | meetings | | FTE alocation WP-1120 WP-1220 WP-1320 WP-1420 WP-1420 WP-1420 WP-1520 WP-1520 WP-1620 WP-1620 WP-1620 WP-1720 WP-1720 WP-1820 Critical spare parts Design review meetings WP-1920 WP-1920 WP-1920 Telescope interfacing - Electrical and references WP-1300 WP-1300 WP-1300 WP-1300 WP-1300 Telescope interface Shipments and general logistics WP-1620 WP-1620 WP-1720 WP-1820 WP-1820 WP-1820 WP-1920 Control system interface Commissioning procedure / plan WP-1300 WP-1300 WP-1300 WP-1300 WP-1300 Critical spare parts Design review meetings Critical spare parts WP-1920 WP-1920 Contingency plans testing meetings WP-1930 WP-1930 WP-1930 Obsolecency reviews and closeout | W. 1110 | W. ILIO | W 1310 | W 1410 | W. 1510 | W 1010 | W1 1/10 | W Iolo | WI 1310 | | Resource allocation WP-1130 Operation modes Telescope interfacing - Electrical and references WP-1130 WP-1230 Documentation and SW Version control SW Version control Telescope interfacing - Control system interface WP-1430 WP-1430 Telescope interface WP-1430 WP-1630 Optics interface Optics interface Control system interfacing & Technical (Re) Commissioning procedure / plan WP-1830 WP-1930 WP-1930 Optics interface Optics interface Optics interface Optics interface Telescope interfacing - Contingency plans testing meetings Optics interface | FTE alocation | <u> </u> | | interfacing | • | | _ | Critical spare parts | _ | | Resource allocation Operation modes and testing meetings meeting mee | WP-1120 | WP-1220 | WP-1320 | WP-1420 | WP-1520 | WP-1620 | WP-1720 | WP-1820 | WP-1920 | | Documentation and Science Telescope interfacing - Commissioning plan Cooling Optics interface Cooling Optics interface Telescope Optics interface Optics interface Teviews and closeout | Resource allocation | Operation modes | | interfacing -
Electrical and | | • | Technical (Re) Commissioning | Contingency plans | • | | Documentation and Science SW Version control Commissioning plan Cooling Optics interface Commissioning plan Cooling Coolin | WP-1130 | WP-1230 | | WP-1430 | | WP-1630 | | WP-1830 | WP-1930 | | WP-1140 WP-1240 WP-1940 WP-1940 WP-1940 | | | | interfacing - | | Optics interface | | • | , , | | | WP-1140 | WP-1240 | | WP-1440 | | WP-1640 | | WP-1840 | WP-1940 | # Multibeam: WBS : WP-2000 | System design and construction WP-2000 | | | | | | | | | |---|---------------------------|---------------------------------|---|--|-----------------------------|---|--|--| | Optics
WP-2100 | Cryostat
WP-2200 | Cooling
WP-2300 | Control computer
and FE interface
WP-2400 | BIAS Electronics /
hot electronics
WP-2500 | Wiring / Harnessing WP-2600 | Simulaitons and
models
WP-2700 | | | | Warm optics & K-
Mirror
WP-2110 | Cryostat(s) design | Heat budget WP-2310 | FE control SW / GUI | Bias electronics WP-2510 | Wiring
WP-2610 | Mechanical models WP-2710 | | | | OMTs | Vacuum & sensors | Coldhead(s) and compressor | Tunning strategies and operations modes | Warm amplifiers / attenautors | Filter and feedthroughs | Optical simulations | | | | WP-2120 | WP-2220 | WP-2320 | WP-2420 | WP-2520 | WP-2620 | WP-2720 | | | | Cold Optics | Mechanical
interfacing | Compressor chiller requirements | Debugging and diagnostics tools | | RF cables / connector | F.E. Analysis &
mechanical
deformations | | | | WP-2130 | WP-2230 | WP-2330 | WP-2430 | | WP-2630 | WP-2730 | | | | Windows and filters | | | Computer
interfaces | | | | | | | WP-2140 | | | WP-2430 | | | | | | | Dichroics /
Wiregrids | | | | | | | | | | WP-2150 | | | | | | | | | | Cal Unit | | | | | | | | | | WP-2160 | | | | | | | | | ## Multibeam: WBS : WP-3000 & WP-4000 | | Dete
wp-: | | Signal handling and Data acquisition WP-4000 | | | | |-----------------------------|--------------------------------|---|--|-------------------------|---------------------------------------|------------------------------------| | HFA 1mm SIS
WP-3100 | LFA 3mm HEMTs
WP-3200 | Local Oscillators
WP-3300 | LNAs, Equalizers,
waveguides
WP-3400 | IF Processor
WP-4100 | Spectrometers
WP-4200 | Acquisition and formating WP-4300 | | SIS mixers | HEMTs | LO technology and reference | LNAs | IF Sub-band separation | Attenuators /
amplifiers | Data pipeline | | WP-3110 | WP-3210 | WP-3310 | WP-3410 | WP-4110 | WP-4210 | WP-4310 | | Magnets
WP-3120 | Mixers
WP-3220 | LO distribution WP-3320 | Equalizers
WP-3420 | IF signal switches | Digitiser & optic
fiber
WP-4220 | Fits writter WP-4320 | | WP-5120 | WP-3220 | WP-5320 | WP-34ZU | WP-4120 | WP-4220 | WP-4520 | | Horns (individual / blocks) | Horns (individual /
blocks) | LO pumping,
attenuation and
control | Waveguides and isolators | | FFT cards | | | WP-3130 | WP-3230 | WP-3330 | WP-3430 | | WP-4230 | | | | | | | | Control computer WP-4240 | | # Multibeam: WBS : WP-5000 | | System integration WP-5000 | | | | | | | | | | |----------------------------------|-----------------------------|------------------------------------|--------------------|--------------------------------|------------------------------------|--|--|--|--|--| | Cryostat / cooler
integration | LO integration | Optics | Detectors / mixers | Wiring and interfacing | Cold / warm
electronics | | | | | | | WP-5100 | WP-5200 | WP-5300 | WP-5400 | WP-5500 | WP-5600 | | | | | | | Mechanical
integration | Synthesizer and chains | Horns / OMTs | HFA SIS / LNA | Temperature and vacuum sensors | Temperature and vacuum sensors | | | | | | | WP-5110 | WP-5210 | WP-5310 | WP-5410 | WP-5510 | WP-5610 | | | | | | | Thermal connections | LO distribution | Cold optics | LFA HEMT / MIXER | Feedthroughs | Preamplifiers and bias electronics | | | | | | | WP-5120 | WP-5220 | WP-5320 | WP-5420 | WP-5520 | WP-5620 | | | | | | | Filters and windows | Attenuators /
control | Warm optics | | RF (IF) Lines | Warm amplifiers | | | | | | | WP-5130 | WP-5230 | WP-5330 | | WP-5530 | WP-5630 | | | | | | | | | K-Mirror and
Control | | Mixers / amplifiers | | | | | | | | | | WP-5340 | | WP-5540 | | | | | | | | | | Select optics and control WP-5350 | | | | | | | | | # Multibeam: WBS : WP-6000 | | | | Lab Testing | | | | |---|------------------------------------|---|---|---------------------------------|------------------------------------|---------------------------------------| | Cryostat / cooler
testing
WP-6100 | Local Oscillators
WP-6200 | HFA pixels
Characterization
WP-6300 | LFA Pixels
Characterization
WP-6400 | Optics characterization WP-6500 | HFA / LFA characterization WP-6600 | Full system characterization WP-6700 | | Vacuum testing WP-6110 | LO Spectral purity WP-6210 | Individual pixel characterization | Individual pixel characterization | Gain and losses WP-6510 | Beam maps WP-6610 | Beam maps
WP-6710 | | | | | | | | | | Thermal load testing | LO pumping and attenuation control | Array
charactarization | Array
charactarization | Filters response | TRx and Allan
variance | TRx and Allan
variance | | WP-6120 | WP-4410 | WP-6320 | WP-6420 | WP-6520 | WP-6620 | WP-6720 | | | | | | | Sideband rejection | Sideband rejection | | | | | | | WP-6630 | WP-6730 | | | | | | | Crosstalk
WP-6640 | Crosstalk
WP-6740 | #### Multibeam: WBS: WP-7000 #### Installation, commissioning, acceptance and science verification WP-7000 Alingment and Full system Optics commissioning commissioning Characterization characterization characterization WP-7100 WP-7200 WP-7300 WP-7400 WP-7500 WP-7600 Science Pre-comissioning Optics alingment On-Sky beam maps Poiting model On-Sky beam maps commissioning plan and acceptance execution WP-7110 WP-7210 WP-7310 WP-7410 WP-7510 WP-7610 Installation & Alignment Technical Beam maps and General Pixel alingment Pixel alingment commissioning reproduceability efficiencies performance (plan execution) WP-7120 WP-7220 WP-7320 WP-7420 WP-7520 WP-7620 Technical Coalingment with Coalingment with Full system allan mapping commissioning HFA Central Pixel LFA Central Pixel capabilities variance report WP-7130 WP-7330 WP-7430 WP-7530 WP-7630 Sideband Technical paper(s) Spectral capabilities separation WP-7140 WP-7540 WP-7640 Science Tunning commissioning optimization report WP-7550 WP-7650 First light and early science papers WP-7670 - This short time scale (target 3 years) requires close coordination and collaboration between all parties: IRAM-ES, IRAM-FR, Partners and Externals (vendors and others). - Workshop being prepared for late 2023 → Kickoff to happen after that. ## Multibeam: one last thing; A proper name for RX system. Advanced Large Heterodyne Array for Millimeter Band Radio Astronomy