FORMATION OF MILLISECOND PULSARS AND DOUBLE NEUTRON STARS

EWASS 2015

Thomas Tauris Argelander-Institut für Astronomie - Universität Bonn Max-Planck-Institut für Radioastronomie

Collaborators on Pulsars / Compact Binaries / SNe research

John Antoniadis Hai-Liang Chen Paulo Freire Lucas Guillemot Jason Hessels Alina Istrate Vicky Kaspi Michael Kramer Matthias Kruckow Norbert Langer Patrick Lazarus Zhengwei Liu Takashi Moriya Cherry Ng Philipp Podsiadlowski Alessandro Papitto Andreas Reisenegger Debashis Sanyal Ed van den Heuvel Joris Verbiest Norbert Wex Sung-Chul Yoon

Alarma / Alarm

1 Pulsar / Press

(T. Belloni)

MSP: press > 100 Hz

Do not try this!

Agenda

- **Overview of the MSP population**
- Formation scenarios of MSP subclasses
- Probing Stellar Evolution using MSPs
- The recycling phase and accretion physics
- Formation of double neutron star systems

•

The NS population

100.000.000 NSs in Milky Way

tip of the iceberg:

- strong B-fields
- rapid spin
- accreting
- hot (newborn)

The MSP population – companion stars

The MSP population - The P-P_{dot} diagram

Tauris, Kaspi, Breton, Deller, et al. (2014)

Tauris (2011)

The MSP population - The standard formation scenario

- Rapid spin: P < 50 ms
- Small period derivative: $\dot{P} < 10^{-17} s s^{-1}$

Ingridients needed for recycling:

- Increase of spin ang. mom.
- Decrease of period derivative

Solution:

• Accretion of mass

$$N = \dot{J}_* \equiv \frac{d}{dt} (I\Omega_*) = \dot{M}_* \sqrt{GM_* r_A} \xi$$

Lamb, Pethick & Pines (1973) Ghosh & Lamb (1979, 1992)

$$\frac{\partial \vec{B}}{\partial t} = \nabla \times \left(\vec{v} \times \vec{B} \right) - \frac{c^2}{4\pi} \nabla \times \left(\frac{1}{\sigma} \times \nabla \times \vec{B} \right)$$

Geppert & Urpin (1994); Konar & Bhattacharya (1997)

 $B = \sqrt{\frac{3c^3 I_{NS}}{8\pi^2 R_{NS}^6} P \dot{P}}$

Magnetic-dipole model

Thomas Tauris - Bonn Uni. / MPIfR

The MSP population - The B-field decay

e.g. Bhattacharya (2002)

Why do MSPs have small B-fields?

1) Because of accretion:

- Ohmic dissipipation and diffusion (crustal heating)
- B-field burial (screening)
 Rotational slow-down → outward motion of votices drag along B-field flux tubes from the core to the curst

2) Because they are old! (Marilyn Cruces' poster on ambipolar diffusion)

The MSP population - The Spiders

and geometry ... "

The MSP population - The Spiders

- <u>Geometric beaming</u> is likely to be causing the difference between Black widows and Redbacks (Chen, Chen, Tauris & Han, 2013, ApJ 775, 27)
- Redbacks do not evolve into black widows (two distinct populations) but see also Benvenuto et al. (2014) Talk by Horvath
- Do Redbacks eventually produce WDs? Probably not... (competition between evaporation and burning of hydrogen)
- **Problem:** poor understanding of magnetic braking
- **Problem:** how/when the radio MSP turns on?
- **Problem:** understanding the accretion and the mechanism of transitional MSPs

Archibald et al. (2009) Papitto et al. (2013) Stappers et al. (2014) Bassa et al. (2014)

and review by Jason Hessels (2015, BONN VII. NS workshop)

The MSP population - The eccentric MSPs

Probing Stellar Evolution using MSPs

EWASS June 2015 - S11

Thomas Tauris - Bonn Uni. / MPIfR

Stellar Evolution and MSPs - The Triple MSP!!!

Tauris & van den Heuvel (2014)

Stellar Forensics

Tracing the evolution backwards see also Sabach & Soker (2015)

- Applying constraints from knowledge of stellar evolution and mass tranfer (RLO).
- Simulations of the dynamical effects of the supernova explosion.
- At all stages ensuring that the triple remains dynamically *stable* on a long timescale.

Millisecond pulsar mass:	$1.438M_{\odot}$			
inner WD mass:	$0.197M_{\odot}$			
inner WD temp:	15 800 K			
inner Porb:	1.63 days			
inner ecc:	0.00069			
outer WD mass:	$0.410M_{\odot}$			
outer Porb:	327 days			
outer ecc:	0.035			
angle between orb. planes: 0.01°				
Ransom et al. (2014), Kaplan et al. (2014)				

Stellar Evolution and MSPs - The M_{WD} - P_{orb} correlation

Puzzles: bifurcation period of LMXBs / tight binary MSPs with He-WDs

Pylyser & Savonije (1988, 1989), van den Sluys, Verbunt & Pols (2005), Ma & Li (2009)

Puzzles: Observational evidence for AIC ?

Low space velocities of some NS binaries + the retention of NS in globular clusters

Tauris, Debashis, Yoon & Langer (2013)

Table 1. Neutron stars which are candidates for being formed via *A* in a globular cluster (a–d) or in the Galactic disk (e–h), respectively. text for further explanations and discussion.

Object	Р	<i>B</i> *	$P_{\rm orb}$	$M_{\rm comp}^{**}$	Ref.
	ms	G	days	M_{\odot}	
PSR J1718-19	1004	4.0×10^{11}	0.258	~0.10	a
PSR J1745-20A	289	1.1×10^{11}	–	-	b
PSR J1820-30B	379	3.4×10^{10}	_	_	с
PSR J1823-3021C	406	9.5×10^{10}	-		d
GRO J1744–28	467	1.0×10^{13}	11.8	~ 0.08	P
PSR J1744-3922	172	5.0×10^{9}	0.191	~ 0.10	
PSR B1831-00	521	2.0×10^{10}	1.81	~0.08	Т
4U 1626–67	7680	3.0×10^{12}	0.028	~ 0.02	

* B-field values calculated from eqn.(5) in Tauris et al. (2012) whi includes a spin-down torque due to a plasma-filled magnetosphere ** Median masses calculated for $i = 60^{\circ}$ and $M_{\rm NS} = 1.35 M_{\odot}$. a) Lyne et al. (1993); b) Lyne et al. (1996); c) Biggs et al. (1994); c Boyles et al. (2011). e) van Paradijs et al. (1997); f) Breton et al. (2007); g) Sutantyo & Li (2000); h) Yungelson et al. (2002); The apparently *young* NS in globular clusters

÷ SN II, I b/c, EC

+ AIC

The peculiar, relatively high B-fields and slow spins of some Galactic NS in close binaries

Pulsar Recycling - accretion physics

$$P_{eq} = 2\pi \sqrt{\frac{r_{mag}^3}{GM}} \frac{1}{\omega_c} \wedge r_{mag}(\dot{M}, B) \wedge B(P, \dot{P})$$

Pulsar Recycling - amount of accreted mass

$$\Delta J_{\star} = \int n(\omega, t) \, \dot{M}(t) \, \sqrt{GM(t)r_{\rm mag}(t)} \, \xi(t) \, dt$$

Puzzles: missing sub-ms MSPs

Where are the sub-ms MSPs?

- Speed limit caused by GW (Bildsten 1998, Chakrabarty et al. 2003)
 however, see also Patruno et al. (2012)
- RLDP (Tauris 2012)
- Observational selection effects (....no)
- Magnetospheric conditions are not satisfied (Lamb & Yu 2005)

Tauris et al. (2014) SKA Science Book

$$P_{eq} \approx 1.40 \ ms \quad \cdot B_8^{6/7} \left(\frac{\dot{M}}{0.1 \dot{M}_{Edd}}\right)^{-3/7} \left(\frac{M}{1.4 M_{\odot}}\right)^{-5/7} R_{13}^{18/7}$$

Problem: those LMXB systems which experience the largest values of M_{dot} are short lived \rightarrow B high and less net accretion onto NS \rightarrow no sub-ms MSP and vice versa: those LMXB systems in which the NSs have small B-fields had a long lived RLO \rightarrow low-mass donors \rightarrow small values of $M_{dot} \rightarrow$ no sub-ms MSP + torque is small for a magnetosphere close to the NS \rightarrow requires a long spin-up timescale

Ultra-stripped SNe – Double NS systems

Ultra-stripped SNe – Double NS systems

Ultra-stripped SN

Tauris, Langer, Moriya, Podsiadlowski, Yoon & Blinnikov (2013), ApJL

Double Neutron Star Systems

= ultra-stripped EC / Fe CCSN candidates

		P (ms)	P _{dot} (10 ⁻¹⁸)	P _{orb} (d)	ecc	M _{psr} / M _{comp}	M _{total}
recycled	J0453+1559	45.8	0.19	4.07	0.11	1.61 / 1.17	2.78
recycled young	J0737-3039 A B	22.7 2773.5	1.8 892	0.10	0.09	1.34 1.25	2.59
recycled	J1518+4904	40.9	0.022	8.63	0.25	?/?	2.72
recycled	B1534+12	37.9	2.4	0.42	0.27	1.33 / 1.35	2.68
recycled	J1753-2240	95.1	0.79	13.64	0.30	?	?
young	J1755-25? Cherry	315.2	2470	9.70	0.09	? / >0.40	?
recycled	J1756-2251	28.5	1.0	0.32	0.18	1.34 / 1.23	2.57
recycled	J1811-1736	104.2	0.90	18.78	0.83	<1.64 / >0.93	2.60
recycled	J1829+2456	41.0	0.053	1.18	0.14	<1.38 / >1.22	2.59
young	J1906+0746	144.1	20300	0.17	0.09	1.29 / 1.32	2.61
recycled	New PALFA Lazarus et al.	27.3	0.15	0.20	0.09	?	2.86
recycled	B1913+16	59.0	8.6	0.32	0.62	1.44 / 1.39	2.83
recycled	J1930-1852	185.5	18.0	45.06	0.40	<1.29/ >1.30	2.59
GC	J1807-2500B	4.2	8.2*	9.96	0.75	1.37 / 1.21	2.57
GC	B2127+11C	30.5	5.0	0.34	0.68	1.36 / 1.35	2.71

Ultra-stripped SNe – Pre-SN cross-sections

DNS $(P_{orb} - P_{spin})$ and $(P_{orb} - ecc)$ correlations

DNS P_{orb} – P_{spin} correlation

Merging Neutron Stars - LIGO detection rate

RECIPE

- Binary stellar evolution
- Population synthesis (input distributions and stellar grids)
- Galactic star formation rate (formation history of massive binaries)
- Galactic potentials (to probe location of mergers in host galaxies)

• Extrapolation to local Universe (scaling-law of galaxy number density)

Thomas Tauris - Bonn Uni. / MPIfR

DFG project Matthias Krukow

Stellar rotation
 WR-stars (winds)
 CE evolution
 SN kicks

Range: NSNS merger 200 Mpc NSBH merger 450 Mpc BHBH merger 0.7 Gpc (Z=0.2)

LIGO event rate: 1 per week (Milky Way: 1 Myr ⁻¹)

Conclusions

- The last decade has revealed new interesting MSPs
 - The spiders, The transitional MSPs (tMSPs), The eccentric MSPs
- New MSPs keep challenging Stellar Evolution
 - The Triple MSPand other puzzling MSP systems But also well-constrained behaviour...
 - The (M_{WD}, P_{ORB}) correlation

The recycling phase revisited

- The spin-up line should be replaced with a 'spin-up valley'
- Characteristic ages of MSPs are pretty useless as age estimators
- The non-existence of sub-ms MSPs is perhaps not surprising
- Formation of double neutron star (DNS) systems
 - Ultra-stripped SNe often lead to small kicks
 - (P_{orb},P_{spin}) and (P_{orb},ecc) correlations in DNS systems

LIGO/VIRGO merger rates

• DNS: 1 Myr⁻¹ MWGal⁻¹ \rightarrow Detection of 1 week⁻¹ (~ factor 100)