

JWST IAC Workshop-GO1 Proposal Planning

MIRI INTEGRAL FIELD SPECTROSCOPY OF GALAXIES

L. COLINA (EC-MIRI, CAB/CSIC)

MIRI. JWST MID-INFRARED INSTRUMENT

https://jwst-docs.stsci.edu/display/JTI/Mid-Infrared+Instrument%2C+MIRI

ONLY JWST INSTRUMENT COVERING THE 5 to 28 MICRONS SPECTRAL RANGE

MIRI detailed description: Rieke+, Wright+, Wells+, Glasse+, Kendrew+, Boccaletti+, Bouchet+, Ressler+, Gordon+, 2015, PASP 127

LOW-Z GALAXIES. SPECTRAL COVERAGE. MID-IR RANGE

- AGN tracers: [OIV], [NeV] & [NeVI]
- Star formation: PAHs, H2 lines
- Excitation (degree of): [NeII], [NeIII], [NeV] & [NeVI]

12-13 March 2018

HIGH-Z GALAXIES. SPECTRAL COVERAGE. NEAR-IR RANGE

Extension of IFS to (rest-frame) near-IR Coverage of Pa α for z > 1.67 Free view of neutral PAH @ 3.3 µm & Br α

- Coronal ISM: [SiVI], [CaVIII]
- Ionized ISM: Pa & Br H lines
- Hot molecular ISM: H₂ lines
- Shocked ISM: [FeII] lines
- Star formation: PAH 3.3µm
- Stellar pop.: CO bands

JWST IAC Workshop 12-13 March 2018

MRS. FIELD OF VIEW & SPATIAL SAMPLING

- 4 IFUs provide simultaneous IFS @ 4 non-adjacent spectral ranges
- Spatial sampling, spatial resolution and FoV changes with wavelength

MIRI. MRS RESOLVING POWER

MRS provides a fixed spectral resolution of ~3200 (5 μ m) to ~1200 (25 μ m)

MIRI. SENSITIVITY

MRS provides a sensitivity x20-100 better than Spitzer

MIRI. MRS SPECTRAL RANGE & COVERAGE

https://jwst-docs.stsci.edu/display/JTI/MIRI+Medium-Resolution+Spectroscopy

- MRS selects Short, Medium or Long band (1, 2 or all three bands)
- Full spectral coverage (5 to 28.8 µm) requires three settings: S+M+L
- Overheads and science time increase for full spectral coverage

RECOMMENDATION: consider the location of specific high-priority spectral features, and select carefully the specific settings needed for your science 8 INST IAC Workshop 12-13 March 2018

JWST/MIRI BACKGROUND

https://jwst-docs.stsci.edu/display/JPP/JWST+Background+Model

- Zodiacal light dominates the background for MIRI at λ < 12 μm
- JWST telescope thermal environment dominates at $\lambda > 12 \ \mu m$
- Stable during typical exposure times

Strategy depends mainly on source's size

- 1) Size of the source small wrt FoV: Nodding on source, i.e. within the FoV
- 2) Size of source large wrt FoV: Nodding off-source, i.e. background

JWST Background

MRS DITHERING/NODDING

https://jwst-docs.stsci.edu/display/JTI/MIRI+MRS+Dithering

DITHERING/NODDING IS A MUST!

- Main reasons:
 - Good PSF sampling for MIRI IFS
 - Detector cosmetic/defects/characteristics (minimize)
 - Accurate background measurements
 - > Others: Enlarge FoV

Relative importance:

MODE	BACKGR ZODIACAL	BACKGR THERMAL	BACKGR INSTR.	PSF SAMPLING	DETECTOR COSMETIC
MIRI-CH1	++	-	-	++	+
MIRI-CH2	++	+	-	++	+
MIRI-CH3	+	++	-	+	+
MIRI-CH4	+	++	-	+	+

++ Dominant / + Relevant / +- Subject to science case / - Non relevant

MRS DITHERING/NODDING

• Dithering/nodding for PSF and cosmetic Fixed patterns (optimized as a function of the spectral range).

Two- and four-point (recommended)

<u>Dithering/nodding for background</u>

One background pointing away from target, if extended

Keep in mind

 Time dedicated to SAMs can be relevant for short on-target exposures:

SAM < 3 arcsec: ~25 seconds SAM > 3 arcsec: ~65 seconds

<u>RECOMMENDATION</u>: think about how to optimize the size and number of dithers according to the size of your source and science case

MRS-IMAGER SIMULTANEOUS OBSERVATIONS (SIMO)

Default in APT: MRS (prime) + MIRIM (simultaneous) [≠ parallel]

- Imager has better PSF and larger FoV > Refine the MRS astrometry
- Very useful for dithers, mosaics, and deep observations:
 - Combine cubes of faint/undetected sources from different visits
 - Mosaics of diffuse emission
 - Multi-epoch serendipitous discoveries
- Filters can be changed when MRS conf. changes

<u>RECOMMENDATION</u>: think about the additional science (multi-filter configurations) for only 30 sec extra overhead per filter

12

JWST IAC Workshop 12-13 March 2018

Image: STScl

SUMMARY

- JWST NIRSpec and MIRI IFS (coordinated) programs extremely powerful. Open a qualitative new window into studies of low- & high-z galaxies because its unique combination of feaures:
 - Increased sensitivity by factors 100 wrt previous instruments
 - Wide spectral coverage from the optical (0.6µm) to the mid-IR (28µm)
 - Stable sub-arcsec angular resolution over the entire spectral range
 - Similar intermediate (R~2000-3000) spectral resolution over spectral range

... Think your observational strategy carefully to optimize your science and overall JWST return

https://jwst-docs.stsci.edu/display/JPP/MIRI+MRS+Recommended+Strategies