

BUKS 2018 - 6th September

María Montes Solís presents:

INFERENCE OF PHYSICAL PROPERTIES IN

PROMINENCE THREADS

Coronal Seismology

Bayesian statistics

Model comparison and inference of parameters

[Prior information

- Advantages | Data with errors
 - One observable

Prominence threads

- Inference of model parameters
- Comparison between period ratio

models in long and short thread limits

Comparison between damping models

(Kass & Raftery 1995)

Analysis $1 \rightarrow B$ Results Assumptions: 0.40 Longitudinally homogeneous tube 0.35 $\rho_p / \rho_c \gg 1$ 0.30 0.25 (p^{0.25} <u>▶</u> 0.20 <u>₩</u> 0.15 (M) v_{ph} $\mu_0 \rho_p$ 0.10 0.05 Data: 0.00 v_{ph} by Lin et al. 2009 (*d*) 15 20 25 10 5 0 B(G)Parameters: × Posterior distributions can be inferred. × $\rho_p \in [10^{-12}, 10^{-9}] \text{ kgm}^{-3}$ × They spread over a range of values. **(θ)** × $B \in (0,50]$ G × Probability B > 20 G is very small.

2

8

9

10

30

(Diaz et al. 2010)

Partially filled tube
 Kink modes (fundamental, first overtone)

1. Simplest form

Long thread limit

2. Simplest form+1 term

Data: Parameter: × $P_1/2P_2 = 1, 1.5, 2, 3$ × $\frac{L_p}{L} \in (0,1)$ × $\sigma = 10\%$

- × Posterior distribution can be inferred.
- × The larger $P_1/2P_2$, the shorter L_p/L .
- × Largest differences between both equations for large L_p/L values.

Prominence threads (Diaz et al. 2010) Analysis 2 $\rightarrow \frac{L_p}{L} = \frac{\rho_p}{\rho_c}$ Results $P_1/2P_2 = 1.5$ × Posterior distributions 50 Short thread limit $P_1/2P_2=2$ can be inferred. $P_1/2P_2=3$ 40 $p(L_p/L|M, d)$ $P_1/2P_2 = 4$ **X** The larger L_p/L , the 30 $\frac{P_1}{2P_2} \approx 1 + (f^2 - 2)\frac{L_p}{L} - (f^2 + 1)\left(\frac{L_p}{L}\right)$ larger $P_1/2P_2$ (in 20 contrast with previous 10

0.00

0.02

- $f = \sqrt{\frac{\binom{\rho_p}{\rho_c} + 1}{2}}$ Parameters: $\stackrel{L_p}{_L} \in (0, 0.1]$ $\stackrel{\rho_p}{_{\rho_c}} \in [1, 300]$ Data: $\stackrel{P_1}{_2P_2} = 1.5, 2, 3, 4$
- lpha $\sigma = 10\%$

Smaller ρ_p / ρ_c values
with larger $P_1 / 2P_2$, so
small density contrasts
are possible.
Probability $\rho_p / \rho_c > 200$ is
very small.

0.04

0.08

0.06

 L_p/L

0.10

results).

<u>Marginal likelihoods</u> Bayes' factors

Results

× Period ratios smaller ~ 0.5 for short threads.

× Period ratios around 1 are better explain in long threads.

× Period ratios larger than 2 more probable in short threads.

Analysis 4 \rightarrow Damping models

Resonant absorption in the Alfvén continuum

(Arregui et al. 2008)

Resonant absorption in the slow continuum
 (Soler et al. 2009)

$$\frac{\tau_d}{P} = \frac{2}{\pi} \frac{R}{l} \left(\frac{2 k_z R}{1 + \frac{\gamma}{\beta}} \right)^{-2}$$

 $\gamma = 5/3$: adiabatic constant

Cowling's diffusion

(Soler et al. 2009)

$$\frac{\tau_d}{P} = \frac{\sqrt{2}}{\pi \tilde{\eta}_c k_z R}$$

Parameters: $\frac{l}{R} \in (0,2]$ $k_z R \in [10^{-3}, 0.1]$ $\beta \in (0,1]$

Parameter: $k_z R \in [10^{-3}, 0.1]$ $\tilde{\eta}_C \in [10^{-4}, 0.5]$

Analysis $4 \rightarrow$ Damping models

Marginal likelihoods

Results

Analysis 4 \rightarrow Damping models

Results Bayes' factors

<u>Resonant absorption (0) / Cowling's diffusion (2)</u>

➤ Observations with $\tau_d/P < 10 \rightarrow$ resonant absorption in the Alfvén continuum
➤ Observations with $\tau_d/P > 10 \rightarrow$ Cowling's diffusion

<u>Summary of results:</u>

- × Magnetic fields strengths of the order of units to few tens of Gauss.
- > Different inference results in the short/long thread approximations for $P_1/2P_2$
- × Total lengths shorter than in previous studies.
- Resonant absorption in the Alfvén continuum as the most plausible mechanism to explain the observations of damped transverse oscillations.

Thank you for your attention