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Results

» Partially ionised plasma is capable of supporting several types

of stable MHD shocks.

» Slow-mode shocks are important in understanding the heating

and dynamics of the solar chromosphere.

» We study numerically the fine substructure within slow-mode
shocks in a partially ionised plasma.

» We discover that intermediate (Alfvén) shocks can form
within the slow-mode shock under certain parameter regimes.

Introduction

» In MHD, several types of shocks are possible and can be
classified based on the velocity transition across the shock.

» Slow-mode shocks are important in understanding fast
magnetic reconnection [1], jet formation and heating in the
solar atmosphere.

» The atmospheric conditions in the solar chromosphere allow
both ionised and neutral particles to exist and interact.

» Fine substructures exist within slow-mode shocks in partially
ionised plasma (e.g. chromosphere). This substructure can
include the formation of additional shock transitions.

» The combination of MHD, shock formation and partial

ionisation has wide applicability in many astrophysical systems,

e.g., chromospheric jets and interplanitary/interstellar shocks.

Shock Conditions

between the flow velocity normal to the shock (v,) and the
characteristic speeds:

(1) superfast: V¢ < |v,,

> (2) subfast: Va4 < |vpl|| V5,
(3) superslow: Vi < |v,| < VA4,

> (4) subslow: 0 < |v,| < Vs,

» Defining the upstream condition 1 and downstream condition
J, several shocks of the from 1 — j are possible. The
transitions relevant for this work are:

> 3 — 4 slow shocks,
> 2 — 3,2 — 4 intermediate shocks.

» Intermediate shocks exceed the Alfvén speed and feature a
reversal in the magnetic field across the shock front.

Numerical Model

» Two fluid numerical simulations of slow-mode shocks are
performed using the (PIP) code for solving interactions of
neutral and ion-electron fluids [2]. The two fluids are coupled
via collisional terms.

» Our initial conditions are an extension of the slow-mode
shocks formed from reconnection proposed by Petschek [3].
The normalised initial conditions are given by:

B, = 0.1 (1)
B, = —1.0(x > 0),1.0(x < 0) (2)
Pn — énptot (3)
Pp — €iptot(1 — fn)Ptozt (4)
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» Previous work [2] has used similar initial conditions to
investigate substructure in slow-mode shocks.

» We use a different parameter regime and find intermediate

shocks. The results presented here use 3 = 1 and &, = 0.9.

» 128000 grid cells are used and features are well resolved.

» MHD shock transitions can be classified using the relationship

» An MHD simulation using the same initial parameters was performed as a reference case
and used to calculate the shock velocity.

» PIP simulation is ran until it approaches a steady-state solution.

» Reversal in magnetic field observed across the shock front in PIP simulation but not in
MHD simulation, indicating an intermediate shock formed due to partially ionised effects.

Reference MHD solution
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» Magnetic field expansion produces a fast-mode rarefaction wave and a slow-mode shock.

» Rarefaction wave drives inflow towards the shock front.

PIP Solution
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» Far more substructure forms in the PIP solution than in the MHD solution.
» PIP solution has a finite shock width due to decoupling and recoupling of species.

» Collisional terms allow a stable intermediate shock to exist within the slow-mode shock
characterised by a reversal in the magnetic field across the shock front.

Conclusion

» Partially ionised plasma results in interesting shock substructures forming.

» We discover that stable intermediate shocks (featuring a reversal in magnetic field) can
form due to the collisional terms, leading to additional heating.

» Additional diffusion mechanisms (e.g., resistivity, viscosity) may add further heating.
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