Initiation of Alfvénic turbulence by Alfvén wave collisions: a numerical study

Sergei Shestov^{1,3}, Yuriy Voitenko², Andrei Zhukov^{1,4}

1 – Royal Observatory of Belgium; 2 – Royal Belgian Institute for Space Aeronomy; 3 – Lebedev Physical Institute, Moscow, Russia; 4 – Skobeltsyn Institute of Nuclear Physics, Moscow, Russia

Solar-Terrestrial Centre of Excellence SIDC, Royal Observatory of Belgium

Outline

- Alfvénic turbulence
- Physical conditions
- Numerical setup
- Analysis:
 - Spatial distribution of *v*;
 - Fourier components;
- Conclusions

Iroshnikov (1963), Kraichnan (1965) and followers ... Ng&Battacharge 1996 Howes&Nielson 2013 ...

• Interaction between counter-propagating AWs;

•
$$z^- = u - \frac{b}{\sqrt{4\pi\rho}}$$

•
$$\mathbf{z}^+ = \mathbf{u} + \frac{b}{\sqrt{4\pi\rho}}$$

• Transfer of energy to smaller \perp scales – larger k_{\perp} ;

Necessary conditions:

 $\mathbf{z}^- = \mathbf{u} - \frac{\mathbf{b}}{\sqrt{4\pi\rho}}$

- k_{\parallel} towards B_0
- \boldsymbol{k}_{\perp} nonunif. along *y*-axis
- *zx*-polarization

$$\mathbf{z}^+ = \mathbf{u} + \frac{b}{\sqrt{4\pi\rho}}$$

- k_{\parallel} anti $\mathbf{B_0}$
- \boldsymbol{k}_{\perp} nonunif. along *x*-axis
- *zy*-polarization

Animation

Iroshnikov (1963), Kraichnan (1965) and followers

incompr. MHD

• Interaction between counter-propagating AWs;

•
$$\mathbf{z}^- = \mathbf{u} - \frac{b}{\sqrt{4\pi\rho}}$$

• $\mathbf{z}^+ = \mathbf{u} + \frac{b}{\sqrt{4\pi\rho}}$

• Transfer of energy to smaller \perp scales – larger k_{\perp} ;

MHD eqs. -> Elsasser form

$$\frac{\partial z^{\pm}}{\partial t} \mp (\boldsymbol{v}_A \cdot \nabla) z^{\pm} + (z^{\mp} \cdot \nabla) z^{\pm} = -\frac{\nabla P}{\rho_0}$$

... $k_{\perp}^{+} + k_{\perp}^{-} = k_{2}^{(0)}$

 $k_{\perp}^{\pm} + k_{2}^{(0)} = k_{\perp 3}^{\pm}$

 $-\kappa_{\perp 3}$

Efficiency should depend on:

- Relative scales λ_{\parallel} and λ_{\perp} ;
- Amplitudes z^+ and z^- ;

From Howes & Nielson 2013

Numerical setup

- MPI-AMRVAC, 3D MHD
 - B₀=20 Gauss
 - $n_e = 10^9 \text{ cm}^{-3}$
 - T = 1 MK;
 - $v_{\rm A}$ = 1 380 km/s;
 - $\beta = 0.017;$

$$L_z$$
=50 Mm; L_x , L_y = 2 λ_{\perp} ;

Sensitive to grid size (256x256x512), method (tvdlf, woodward).

• Perturbations:

$$u = 0.1v_A$$
; $b = 0.1B_0$;
 $\lambda_{\parallel} = 10$ Mm;
 $\lambda_{\perp} = 0.3$, 0.75, 1.5, 7.5, 37.5 Mm;

Expected results and possibilities for analysis

Waves with new \mathbf{k}_{\perp} are produced. They propagate with $v_{\rm A}$ together with mother waves;

Perturbation of v_x profiles

Perturbation of v_x and v_y profiles

Perturbation of v_x and v_y profiles

λ_{\perp} =0.75 Mm;

BUKS 2018 3-7 Sep 2018

Sergei Shestov

Spectral components

Spectral components

BUKS 2018 3-7 Sep 2018

Sergei Shestov

Alfvenic turbulence

Conclusions

- Alfvén wave collisions interaction of counterpropagating Alfvén waves in MHD;
- Necessary conditions ⊥ wavefront nonuniformities (k_⊥);
- New waves with smaller \perp scales are generated (higher k_{\perp});
- Efficiency depends on \perp/\parallel scales;

Thank you for attention!