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1. RESONANT DAMPING OF CORONAL LOOP KINK

OSCILLATIONS AS A SEISMOLOGICAL TOOL

Fist observation of coronal loop kink oscillations made by TRACE in 1998

[Aschwanden et al. (1999), Nakariakov et al. (1999)] revealed

that these oscillations damp in a few oscillation periods. This property of

kink oscillations have been confirmed by later observations.

At present, the generally accepted mechanism of this damping is resonant

absorption. Ruderman & Roberts (2002) suggested to use the

observed damping of kink oscillations to get information about the internal

structure of an oscillating loop.
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In the simplest model of co-

ronal loop there is resonant

surface where the frequency

of kink oscillation coincide

with local Alfvén frequency.

In the vicinity of this surface

there is strong energy trans-

fer from kink oscillation to

local Alfvén oscillations. As

a result, the kink oscillation decays. The damping rate depends on the

thickness of transitional layer, the ratio of densities ρi/ρe, and a particular

form of variation of density inside the transitional layer.
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Ruderman & Roberts (2002) adopted a sinusoidal profile of density

in the transitional layer and obtained for the damping time

tdec
Π

=
2a

π`

ζ + 1

ζ − 1
, ζ =

ρi
ρe

They took ζ = 10 and using tdec and Π observed by TRACE in 1998

obtained `/a = 0.23. If we take ζ = 3 then we obtain `/a = 0.36.

Goossens et al. (2002) considered 11 observed cases of kink oscilla-

tions. They assumed the linear density profile and obtained

tdec
Π

=
4a

π2`

ζ + 1

ζ − 1

If we take ζ = 10 then we obtain for the same 1998 event `/a = 0.15.
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Two other effects that can affect the estimate of `/a are the density

variation along the loop and its expansion. Dymova & Ruderman
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(2006) showed that the es-

timate of `/a is not affected

by the density variation along

the loop if ρ(r, z) = f (r)g(z)

in the transitional layer.

Shukhobodskiy & Ru-

derman (2018) showed

that the density variation along

the loop and its expansion

does not affect `/a if ρ(r, z) = f (ψ)g(z), where ψ = const is the equa-

tion of a magnetic surface.
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However, the main problem is that this theory is based on a wrong as-

sumption! This assumption is that the loop oscillation is described by

an eigenmode of dissipative MHD. Ruderman & Roberts (2002)

showed that kink oscillation of an arbitrarily disturbed loop is described

by an eigenmode of dissipative MHD everywhere but in the vicinity of the

resonant surface after the time of the order of oscillation period. However,

the motion near the resonant surface is characterised by very small spatial

scale in the radial direction.

Arregui (2015) gave the example: Re ∼ 1012 we have

tdec/Π ∼ 13 and tph/Π ∼ 170 for `/a ∼ 0.1;

tdec/Π ∼ 3 and tph/Π ∼ 500 for `/a ∼ 0.5.

For Π ∼ 3 min we need to wait between 6 and 25 hours!
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This problem was addressed numerically for propagating kink waves by

Pascoe et al. (2012). It was found that the spatial damping of kink

waves occurs somewhat slower that it is predicted by “classical” resonant

absorption. Later this result was confirmed analytically for propagating

waves by Hood et al. (2013) and for standing waves by Ruderman

& Terradas (2013). In particular, it was shown that damping time of

coronal loop kink oscillations can be up to 30% underestimated.

However, the main result first obtained by Pascoe et al. (2012) was

that the wave amplitude does not decay exponentially. Rather it is first

described by Gaussian profile, and only later by exponent.
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Pascoe et al. (2013) suggested to use this result for coronal seismology.

The idea of this method is the following.
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We can approximate the amplitude dependence on time by

A(t) =


A0 exp

[
− (t/tg)

2
]
, t ≤ ttr,

A1 exp
[
− (t− ttr)/tdec

]
, t > ttr

where A1 = A0 exp
[
−(ttr/tg)

2
]
. Assuming linear density profile we obtain

a

`

ζ + 1

ζ − 1
=
π2tdec

4Π

We also have ttr = F (`/a, ζ). From these two equations we can find `/a

and ζ simultaneously.

Pascoe with co-authors later improved this method including possible

period variation, non-zero and time-dependent mean value of the loop

displacement, etc. The latest development and references on previous

studies can be found in Pascoe et al. (2018).
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2. KINK OSCILLATION OF DYNAMIC CORONAL

LOOPS

Aschwanden & Terradas (2008) reported observation of kink oscil-

lation of a cooling loop. Morton & Erdélyi (2009) showed that cool-

ing causes the reduction in the oscillation period. Ruderman (2011a)

used the WKB method to derive an adiabatic invariant determining the

dependence of the oscillation amplitude on time. Using this invariant he

showed that cooling causes the amplification of oscillations. Ruder-

man (2011b) studied the competition of amplification due to cooling

and damping due to resonant absorption. He showed that the amplifica-

tion can counteract decay only if the cooling time is of the order of wave

period unless the transitional layer is very thin, `/a ∼ 0.02.
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Magyar et al. (2015) studied the same problem numerically and con-

firmed that cooling causes the oscillation amplification. However the effect

was less pronounced because of different boundary conditions.

Schukhobodskiy et al. (2018) studied the effect of tube expansion

on kink oscillation of cooling loops in the presence of resonant absorption.
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Λ is the ratio of cross-

section radius in the

middle of the loop to

the radius at the foot-

points. We see that the

loop expansion acts in

favour of oscillation amplification.
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Dynamic behaviour also can take catastrophic form. It is coronal rain which

is cased by catastrophic cooling and thermal instability. Often condensa-

tion occurs near the loop apex and then move down under the action of

gravity. However, sometimes they oscillate near the apex. What prevents

then from falling down?

Verwichte et al. (2017) studied the dynamics of a dense blob on an

oscillating coronal loop and showed that the ponderomotive force due to

oscillation can keep the blob oscillating near the loop top. However it

is only possible when the oscillation amplitude is by an order of magni-

tude larger than observed. Hence, the authors concluded that the loop

oscillation is not the main course of blob oscillation.
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Kohutova & Verwichte (2017) used the numerical modelling of blob

evolution. They concluded that the main courses of blob oscillation are

the pressure increase below the blob and bending of magnetic field lines.

Verwichte et al. (2017)

also suggested a mechanism of

excitation of kink oscillations

by the motion of a blob along

a loop.

Kohutova & Verwichte (2017)

also studied numerically the excitation of vertical kink oscillations by plasma

condensations.
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3. ENCHANCED DAMPING OF ALFVÉN WAVES

DUE TO PHASE MIXING

• Alfvén waves are considered as good candidates for coronal heating

because they can easily transport energy to the upper part of solar

atmosphere.

• The main problem is how to dissipate them.

• Heyvaerts & Priest (1983)

suggested phase mixing as

a mechanism that can greatly

enhance the damping efficiency.
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• While in a homogeneous plasma the characteristic length of dissipa-

tion is proportional to Re, in an equilibrium with straight magnetic

lines and inhomogeneous in the direction orthogonal to these lines it is

proportional to Re1/3.

• Recently Pagano and De Moortel (2017) addressed numerically

the problem of coronal heating by phase-mixed Alfvén waves. They

excited kink oscillations in a magnetic tube with a transitional layer

and calculated the heating in this layer. Their conclusion is: “as a

result of the extreme physical parameters we adopted and the moderate

impact on the heating of the system, it is unlikely that phase-mixing

can contribute on a global scale to the heating of the solar corona.”

This conclusion was then confirmed by Pagano et al. (2018).
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• However, it seems that it is too early to reject phase mixing as a means

to heat the corona.

• First of all, it looks like heating by phase mixing is more appropriate in

coronal holes.

• The damping efficiency can be further enhanced by geometry of mag-

netic field. Ruderman et al. (1998) showed that in an equilibrium

with exponentially expanding magnetic field lines the damping length

is proportional not to Re1/3 but to ln(Re).

• Ruderman et al. (1998) assumed that the wavelength is much

smaller than the characteristic length of variation of equilibrium quan-

tities along the magnetic field lines and used the WKB method.
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• If we consider Alfvén waves with periods of the order of minutes then

the wavelength is comparable with the atmospheric scale height and the

WKB method is not applicable. In this case, in general, only numerical

study is possible.

• However, there is one exception: non-reflective magnetic plasma con-

figurations.

We now briefly describe the study of phase mixing in non-reflective config-

urations. We consider torsional Alfvén waves in an axisymmetric equilib-

rium. In cylindrical coordinates equilibrium quantities depend on r and z

in cylindrical coordinates r, ϕ, z. In perturbations only the ϕ-components

of velocity, v, and magnetic field, bϕ, are non-zero. The only dissipative

process is shear viscosity.
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The linearised MHD equations reduce to

ρ
∂2u

∂t2
=

B · ∇(r2B · ∇u)

µ0r2
+ ρν

(
∂3u

∂t∂r2
+

∂3u

∂t∂z2

)
, u =

v

r

Equilibrium magnetic field can be expressed both in terms of potential and

magnetic flux function

Br

B0
=
∂φ

∂r
= −H

r

∂ψ

∂z
,

Bz

B0
=
∂φ

∂z
=
H

r

∂ψ

∂r

Using φ and ψ as independent variables we transform the equation for u to

∂2u

∂t2
− V 2

A

r2
∂

∂φ

(
r2B2

B2
0

∂u

∂φ

)
=
νr2B2

H2B2
0

∂3u

∂t∂ψ2
, V 2

A =
B2

µ0ρ

We look for the solution to this equation in the form

u(t, φ, ψ) = A(φ, ψ)Φ(t, h(φ, ψ), ψ)

18



Taking

h = B0V0

∫ φ

φ1(ψ)

dφ′

BVA
, A = A0(ψ)(H/r)(ρ0/ρ)1/4

we obtain

∂2Φ

∂t2
− V 2

0

∂2Φ

∂h2
=
V 2
AΦ

r2A

∂

∂φ

(
r2B2

B2
0

∂A

∂φ

)
+
νr2B2

H2B2
0

∂Ξ

∂t
(∗)

Ξ =
1

A

∂2(AΦ)

∂ψ2
+

2

A

∂h

∂ψ

∂

∂ψ

(
A
∂Φ

∂h

)
+
∂2h

∂ψ2

∂Φ

∂h
+

(
∂h

∂ψ

)2
∂2Φ

∂h2

When ν = 0 we obtain Klein-Gordon equation for Φ. Non-reflective mag-

netic plasma configurations are defined by the condition

V 2
A

r2A

∂

∂φ

(
r2B2

B2
0

∂A

∂φ

)
= σ(ψ) (†)

When the magnetic field configuration is given, this equation determines

the equilibrium density ρ.
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We then assume that dissipation is weak, meaning that the last term in

equation for Φ is small, and use the WKB to study the wave damping.

Equation (†) imposes serious restriction on the spatial variation of density.

To relax it we can consider weakly reflective equilibria. There are two kinds

of such equilibria:

(i) the characteristic scale of variation of the coefficient at Φ in equation

(∗) is large in comparison with the wavelength;

(ii) the coefficient at Φ in equation (∗) is small.

Ruderman & Petrukhin (2018) assumed that (ii) is satisfied and

studied the Alfvén wave phase mixing in an equilibrium with exponentially

expanding magnetic field lines and the density exponentially decreasing

with the height.
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Br = B0e
−z/HJ1(r/H)

Bz = B0e
−z/HJ0(r/H)

φ = −He−z/HJ0(r/H)

ψ = re−z/HJ1(r/H)

ρ = ρ̂(ψ)e−αz/H, α = H/Hρ

The boundary φ = φ2 intersects

the z-axis at z = 6H.

For typical values of parameters in

coronal holes and plumes condition (ii)

is satisfied with great margin.
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We modelled the density enhancement in coronal plumes by

ρ̂(ψ) =
ρ0
ζ


1 + (ζ − 1)(1− ψ/ψb)2, ψ ≤ ψb

1, ψ ≥ ψb

with ζ = 5. The driver of Alfvén waves was defined by

v = v0

(
1− r2

r20

)
e−iωt at z = 0

Viscosity in the corona is strongly anisotropic. Shear viscosity is by about

10 orders of magnitude smaller than volume viscosity. The typical value of

kinematic shear viscosity is ν = 1 m2 s−1. For this value of ν Alfvén waves

propagate to the upper corona and solar wind without damping.

However, it is possible that ν is greatly enhanced by turbulence.
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We considered ν as a free parameter and calculate the dependence of the

relative wave energy flux ∆ = Π/Π0 on z for α = H/Hρ = 0.8 and various

values of wave periods and H. Below ∆(z) is shown for the wave period

equal to 60 s and H = 60 Mm:
.............. ν = 105 m2 s−1

−−−−−− ν = 106 m2 s−1

−−−− ν = 3×106 m2 s−1

– · – · – · – ν = 107 m2 s−1

Hence, about a quarter of wave

energy dissipates at height 360 Mm

if shear viscosity is increased

by 7 orders of magnitude in

comparison with its classical value.
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We also calculated the dependence of ∆(6H) on α = H/Hρ:

......... H = 60 mM, Π = 60 s

−−−−−H = 30 mM, Π = 60 s

−−−H = 30 mM, Π = 30 s

– · – · – H = 60 mM,

Π = 30 s
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4. KELVIN-HELMHOLTZ INSTABILITY INDUCED BY

CORONAL LOOP KINK OSCILLATIONS

Π
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The Kelvin-Helmholtz instability induced by magnetic loop kink oscillation

was observed in many numerical studies (Terradas et al. 2008; An-

tolin et al. 2014, 2016; Magyar & Van Doorsselaere 2016a,b;

Howson et al. 2017a,b; Karampelas & Van Doorsselaere 2018).

Barbulescu et al. (2018) considered a modelled flow near the bound-

ary of a twisted magnetic tube embedded in a straight magnetic field.

θ
BiBe

Bi=(Bisinθ, 0, Bicosθ)

Ue = (-Ucos(Ωt), 0, 0)

Ui = (Ucos(Ωt)cosθ, 0, -Ucos(Ωt)sinθ)

x

y

z

θ

θ

θ

Be=(0, 0, Be)
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When there is no oscillation (Ω = 0) the discontinuity is stable when

U < Uc and unstable otherwise, where

U 2
c =

(ρi + ρe)V
2
AiV

2
Ae tan2(θ/2)

ρiV 2
Ai + ρeV 2

Ae

In the general case the evolution of discontinuity is defined by Mathieu’s

equation d2η

dτ 2
+ [a− 2q cos(2τ )]η = 0

where τ = Ωt, and a and q are expressed in terms of equilibrium quantities.

Main results:

• The discontinuity is unstable for any value of U .

• The initial value problem is ill-posed when U > Uc and well-posed

when U < Uc.
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We also introduced the notion of σ-stability. In general, a system is called

σ-stable if perturbations grow not faster than eσt.

For a particular case of stability of coronal loop boundaries we took

σ = 1/tdec. Hence, a coronal loop boundary is σ-stable if the instability

growth time is larger than the damping time.

Using the estimate tdec . 5Π we obtained that the tangential discontinuity

is σ-stable if θ ≈ 2◦. This corresponds to about half-turn of magnetic field

lines in a twisted magnetic tube.
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