Heating effects from driven kink and Alfvén waves in coronal loops

Mingzhe Guo^{1,2}, Tom Van Doorsselaere¹, Kostas Karampelas¹, Bo Li², Patrick Antolin³, Ineke De Moortel³

¹Centre for mathematical Plasma Astrophysics, KU Leuven, Belgium ²Institute of space sciences, Shandong University, Weihai, China ³School of Mathematics and Statistics, University of St. Andrews, St. Andrews, UK

> BUKS 2018 Tenerife, Spain

CONTENTS

Introduction

- Kink and Alfvén waves
- Decayless transverse oscillations
- Numerical models
- Results
 - General dynamics of the loops
 - Energetics
- Observable properties: Forward models
- Conclusions

KINK AND ALFVÉN WAVES

- Kink waves are ubiquitous in the solar atmosphere (De Moortel & Nakariakov 2012; Nakariakov et al. 2016).
 - Transverse Wave Induced K-H (TWIKH) rolls probably play an important role in coronal heating (Terradas et al. 2008; Antolin et al. 2014, 2017; Magyar et al. 2015; Karampelas et al. 2017; Howson et al. 2017)

Antolin et al. 2014

- Alfvén waves:
 - torsional motions ⇒ could be detectable to spectrographs indirectly (Zaqarashvili 2003, Jess et al. 2009)
 - could carry a large amount of energy to the corona ⇒ important for heating (Uchida & Kaburaki 1974, Muller et al. 1994, Beliën et al.1999)

DECAYLESS OSCILLATIONS

- Decayless transverse oscillations are observed.
 - A common phenomenon in corona (Anfinogentov et al. 2015)

Anfinogentov et al. 2015

Nakariakov et al. 2016

- they can be explained as periodic brightening of TWIKH rolls (Antolin et al. 2016) or driven oscillations at footpoints (Nakariakov et al. 2016, Karampelas et al. 2017)
- We consider driven oscillations in loops and examine the heating effects.

NUMERICAL MODELS

• Equilibruim

Table 1. Parameters used in simulations

Parameters	Values
Loop length (L)	150 Mm
Loop radius (R)	$1 \mathrm{Mm}$
External density (ρ_e)	$2.5\times10^{-15}~{\rm g/cm^3}$
Density ratio (ρ_i / ρ_e)	3
Temperature (T)	1 MK
Magnetic field (B_i)	50 G

density profile

$$\rho(x, y) = \rho_e + (\rho_i - \rho_e)\zeta(x, y),$$

where

$$\zeta(x, y) = \frac{1}{2}(1 - \tanh(b(r(x, y) - 1)))$$

Mingzhe Guo

Driven kink and Alfvén waves in coronal loops

NUMERICAL MODELS

- Footpoint drivers
 - kink driver (K-model)

$$\mathbf{v}_{i} = v_{0} \left[\sin \left(\frac{2\pi t}{P_{k}} \right), \mathbf{0}, \mathbf{0} \right], \tag{1}$$

$$\mathbf{v}_{\rm e} = v_0 R^2 \sin\left(\frac{2\pi t}{P_{\rm k}}\right) \left[\frac{x^2 - y^2}{(x^2 + y^2)^2}, \frac{2xy}{(x^2 + y^2)^2}, 0\right].$$
 (2)

Alfvén driver (A-model)

$$v_{\theta} = v_0 \sin\left(\frac{2\pi t}{P_{\rm A}(r)}\right) \begin{cases} 2^4 \left(\frac{r}{R}\right)^2 \left(\frac{r}{R} - 1\right)^2, & r/R \le 1\\ 0, & r/R > 1 \end{cases}$$

mixed driver = kink + Alfvén (M-model)

DYNAMICS

- TWIKH rolls can be observed in the K-model, similar to previous studies (Terradas et al. 2008; Antolin et al. 2014, 2016, 2017; Magyar et al. 2015; Karampelas et al. 2017; Howson et al. 2017)
- KHI eddies appear around the boundary in the A-model
- The loop is deformed and more eddies occur in the M-model
- Temperature perturbations appear: adiabatic heating (and cooling) processes

ENERGETICS

- Input energy \approx internal + kinetic energy
- Magnetic energy decrease \Rightarrow internal energy + energy flux through the boundary
- For the M-model, the energy flux ~ 36.5 Wm⁻², close to balance the radiative losses of quiet corona (~ 100 Wm⁻²).

ENERGETICS

- Internal energy and temperature increase for all three models.
- The input energy in the M-model and the sum of the other two models are almost the same level, but the temperature and internal energy still get a larger increase.
- Mixed modes can lead to a more efficient energy dissipation in the turbulent state of plasma
- It means the TWIKH rolls act as an agent to dissipate energy in other wave modes.

OBSERVABLE PROPERTIES: Imaging Models

• Original (numerical) resolution models

- Transverse oscillations and small scales can be seen in the K-model and M-model.
- Intensity perturbations appear in the A-model due to the KHI.

- Degraded resolution models (mimic SDO/AIA)
 - Transverse oscillations can be seen in the K-model and M-model, similar to the real observations (Nisticò et al. 2013; Anfinogentov et al. 2013, 2015).
 - Small scales disappear due to the coarse resolution.

From left to right: the K-model, A-model and M-model

Alfvén modes can probably co-exit with kink modes, leading to enhanced heating.

Mingzhe Guo

OBSERVABLE PROPERTIES: Spectral Models

• Original (numerical) resolution models

- K-model: transverse oscillations and KHI

 staggered blue and red "bow-like" shapes
- A-model: Alfvén oscillations ⇒ staggered spot regions
- M-model: mixed transverse and torsional motions \Rightarrow "tadpole-like" pairs

- Degraded resolution models (mimic Hinode/EIS)
 - Small scales disappear due to the coarse resolution.
 - Beating can be seen in the M-model due to the frequency mismatch between the two modes.

From left to right: the K-model, A-model and M-model

Mingzhe Guo

OBSERVABLE PROPERTIES: Spectral Models

• Original (numerical) resolution models

• Line broadening can be observed due to the KHI and Alfvén oscillations.

• Degraded resolution models (mimic Hinode/EIS)

- All the shapes become stripes without small scales.
- We can also see the beating in the M-model

From left to right: the K-model, A-model and M-model

Mingzhe Guo

- We simulated different loops with different drivers and KHI is obtained in all models.
- Mixed modes can lead to a more efficient energy dissipation in the turbulent state of plasma and the KHI eddies can act as an agent to dissipate energy in other wave modes.
- Alfvén modes and small structures are not observable in real imaging observations, therefore, Alfvén modes can probably co-exist with kink modes, leading to enhanced heating.

Thank you!