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1.Damped standing and propagating transverse MHD waves

• Standing transverse MHD waves in coronal loops (Schrijver et al. (1999);

Aschwanden et al. (1999)).

• Propagating transverse MHD waves (COMP (Tomczyk et al. 2007),

SDO/AIA (McIntosh et al. 2011)).

• Transverse waves = kink waves (m = 1) (Nakariakov et al. (1999).

• Rapid damping: resonant damping ? definitely at work.

• Exponential damping (eigenmode analysis) / Gaussian damping.

For that’s the attraction of the conference circuit: it’s a way of

converting work into play, combining professionalism with tourism.

Write a paper and see the world.

Small World

David Lodge



2. Resonantly damped MHD waves on flux tubes / Eigenmodes.

2.1 Equilibrium and spatial and temporal dependence of waves

• Cylindrical plasma column in static equilibrium.

• Loop of radius R: 0 ≤ r ≤ R : i; r ≥ R : e

• System of cylindrical coordinates (r, z, ϕ).

• Equilibrium magnetic field ~B0 = B0
~1z, equilibrium density ρ0(r).

•Wave variables.

• exp(−iωt), exp(i(mϕ + kzz)) m, kz = azimuthal and axial wave numbers.

• Kink modes m = 1

• Eigenmodes: dispersion relation DR(ω,m, kz, nR) = 0.

Eigenmodes: exponential damping



2.2 Resonant damping of kink MHD waves due to non-uniformity.

• Inhomogeneity in interval b = R− l/2 ≤ r ≤ a = R + l/2

• ρ0 varies from ρi to ρe in interval [R− l/2, R + l/2].

• ωA(r) = local Alfvén frequency

ω2
A(r) =

(~k · ~B)2

µρ0(r)
= k2z v

2
A(r)

• vA = the local Alfvén velocity, v2A(r) = B2/(µ ρ0(r)).

• ωA varies from ωAi to ωAe in interval [R− l/2, R + l/2].

• See e.g. Fig 4 of ER1983

vAi < ω/kz < vAe, ωAi < ω < ωAe

.

• Replace the discontinuous variation of ωA by a continuous variation.

• Classic kink (m = 1) mode is always resonantly damped.





• Non-axisymmetric (m ≥ 1) waves with ω in AC undergo resonant damping.

• Standing waves: real wave number kz: complex frequencies ω.

exp(−iωt), ω = ωR + iγ

exp(−iωt) = exp(−iωRt) exp(γt) = exp(−iωRt) exp(−t/τd)

• γ = the decrement, τd = 1/ | γ | = the damping time.

• Phase velocity vph = ω/kz.

Eigenmodes: exponential damping

3. Direct problem for exponential damping.

3.1 How to compute resonantly damped eigenmodes.

• P and τD are determined by ρ0(r), p0(r) and Bz .

• Direct problem: ρ0(r), p0(r) and Bz are specified a priori.

• P and τD are computed.

• Numerical code / Generalized Frobenius method / Connection formulae.



3.2 Analytic dispersion relation

• Use connection formulae: SGH-method.

• The thin boundary (TB) approximation: l/R << 1.

• The thin tube (TT) approximation.

• Standing waves (long wavelength approximation): kzR << 1.

• Dispersion Relation / Eq 74 of GHS1992.

ρe(ω
2 − ω2

Ae) + ρi(ω
2 − ω2

Ai) = iπ
m/R

ρ(rA) | ∆ |
ρi(ω

2 − ω2
Ai)ρe(ω

2 − ω2
Ae)

•

∆ =
d

dr
(ω2 − ω2

A(r)) |rA

• ∆ = key quantity.

• Dispersion Relation relates frequency ω and wave number kz.



Standing waves.

• Fix kz and solve for ω (GHS1992, RR2002, GTAAB2009).

ω2
R =

ρi ω
2
A,i + ρe ω

2
A,e

ρi + ρe
= ω2

k = k2z v
2
k

γ = −| m | π
2R

ρ2iρ
2
e

ρ(rA)(ρi + ρe)
3

(ω2
A,e − ω2

A,i)
2

| ωk || ∆ |
= Eq. 77 GHS1992

• vk is kink velocity v2k = (B2
i + B2

e)/(µ(ρi + ρe))

Period

• Equal and constant magnetic fields Bi = Be = B

P = τAi
√

2

ζ + 1

ζ


1/2

•
ζ = ρi/ρe, τAi = L/vAi, vAi = B/

√
µρi, vk =

√
2 vAi

 ζ

ζ + 1

1/2

• L = the length of the loop.



Exponential damping rate γ and exponential time τD

• TTTB approximation: Effect of the non-uniform layer on the damping is

contained in the value of ∆. i.e. the derivative of ω2
A(r) at rA .

• Take equal and constant magnetic fields Bi = Be = B in Eq. 77 GHS1992.

• See equation (31) of Goossens et al. 2009

γ

ωk
= −π

8

| m |
R

(ρi − ρe)2

(ρi + ρe)

1

| (dρ
dr

)rA |

• Effect of the non-uniform layer is determined by

(
dρ0
dr

)rA

• Characterize the variation of density in the non-uniform layer at the pos-

tion rA by quantity G

G =
R

(ρi − ρe)
| (dρ0
dr

)rA |



• Damping rate and damping time τD

γ

ωk
= −π

8

(ρi − ρe)
(ρi + ρe)

1

G
,
τD
P

=
4

π2
ζ + 1

ζ − 1
G

• For a given ζ, τD/P is determined by the dimensionless quantity G.

• Direct problem: the equilibrium configuration is freely choosen.

• Confine variation of density to a layer of thickness l with steepness α (VD

et al. 2004)

dρ0
dr
|R= −αρi − ρe

l

• Linear variation: α = 1; sinusoidal variation (RR 2002) α = π/2.

•

G =
α

(l/R)

• Same value of τD/P for infinitely many couples (α, l/R).

• {(τD/P )L for a layer with thickness (l/R)L } = {(τD/P )S for a layer with

thickness (l/R)L × π/2 } and vice versa.



• Direct problem: α and l/R are prescribed.

• Inverse problem: cannot distinguish between different couples of (α, l/R).

τD
P

=
1

| m |
4

π2
α

l/R

ζ + 1

ζ − 1

• α = 1 for linear variation (see Eq. 79b GHS 1992), α = π/2 for a sinusoidal

variation (see RR 2002).

• Big success! Explains rapid damping of standing transverse waves!

• Example α = π/2, ρi/ρe = 5, l/R = 1/4, τD/T = 12/π ≈ 4

• Fast damping predicted about a decade before it was observed.



4. Direct problem for Gaussian damping.

4.1 Propagating waves.

• First studied by Pascoe et al. 2012 in numerical simulations.

• Hood et al. 2013: Analytical theory for propagating waves.

• TTTB approximation and a linear variation of density: α = 1.

• Analytical expression for the Gaussian damping length LG.

L2
G =

16

l/R

1

k2z

ζ + 1

ζ − 1

2

• Pascoe et al. 2013: expression for height hS of the switch of the Gaussian

to the exponential profile.

4.2 Standing waves.

• Analytical theory for temporal Gaussian damping of standing waves by

Ruderman and Terradas 2013.

• TTTB approximation and a linear variation of density (α = 1).

• No analytical expressions for τG, tS.

• MVD2016: Numeric simulations / Pascoe et al. 2016: Observations



5. Seismology for standing waves of coronal loops.

• Initial evolution: Gaussian damping.

• No theoretical expressions on Gaussian damping of standing waves

“I’ve done everything the Bible says. Even the stuff that contradicts the

other stuff. What more can I do? ”

N.F. The Simpsons

5.1 Limitations.

• Period P and the damping times τD, τG are determined by: ρ0(r), p0(r), ~B0(r).

• Helio-seismology is a big success.

• Big difference between helioseismology and seismology of coronal loops.

• Seismology of coronal loops is not able to determine the radial structure

of equilibrium.

• Only a few characteristic quantities can be determined. No unique solution

for equilibrium.

• Reduced seismological problem.



5.2 Many solutions

• Recall equations for P and τD

P

τAi
=
√

2

ζ + 1

ζ


1/2

,
τD
P

=
4

π2
ζ + 1

ζ − 1
G, G =

α

(l/R)

• 2 observables: period P and damping time τD

• 4 unknown equilibrium quantities: ζ, τAi, l/R, α

• 2 equations for 4 unknowns: an underdetermined system.

• ∞2 solutions

5.3 Different cases

• Observed values of period.

• 1 equation and 2 unknowns: ζ = ρi/ρe and τAi = L/vAi.

• ∞1 solutions.

• Nakariakov and Ofman 2001: ρi/ρe = 10 ; single solution for τAi.

• Choose value for L and ρi and determine an estimate for B.



• Observed values of damping times.

• 1 equation and 3 unknowns: ζ, l/R and α (G = α/(l/R) ).

• ∞2 solutions.

• Prescribe α and ζ and find single solution for l/R or vice versa.

• Ruderman and Roberts, 2002 and Goossens et al. 2002 : ρi/ρe = 10

and α = π/2 (sinusoidal variation).

• Observed values of periods and damping times.

• 2 equations and 4 unknowns: τAi = L/vAi, ζ, l/R, and α.

• ∞2 solutions.

• Arregui et al. 2007 and Goossens et al. 2008 : α = π/2.

• 2 equations for 3 unknowns: ∞1 solutions.

• Recover results by the use of a linear variation of density and non-

uniform layers with thickness (l/R)L = (l/R)S × (2/π).

• Reduced seismology: ∞ solutions.

• Single solution : prescribe values of unknown quantities, e.g. α, ρi/ρe.





6. Bayesian Inference for exponential time damping

6.1 Inference for ζ and l/R

τD
P

=
4

π2
α

l/R

ζ + 1

ζ − 1
=

4

π2
G
ζ + 1

ζ − 1

• 2-dimensional joint probability density function.

• 1-dimensional cuts for fixed l/R and fixed ζ.

• Marginal posteriors for ζ and l/R

6.2 Inference for α and G

τD
P

=
4

π2
ζ + 1

ζ − 1
G, G =

α

(l/R)

• Marginal posteriors for α and G







6.2 Inference for α and G.



7. Conclusions

• Reduced seismology.

• Characteristic quantities.

• ∞ many solutions even to the reduced problem.

• Single solution: prescribe values for unknown quantities.

• Bayesian analysis.

• Gaussian damping of standing waves: analytical expressions for τG, tS

“Has anything escaped me?” I asked with some self-importance.

“I trust that there is nothing of consequence which I have overlooked?”

“I am afraid my dear Watson, that most of your conclusions were erroneous.”

The Hound of the Baskervilles.

A. Conan Doyle.


