BUKS 2018, September 2018

No unique solution to the seismological problem
of standing kink MHD waves.

BUKS 2018

Waves and Instabilities in the solar atmosphere.
3- 7 September 2018

La Laguna, Tenerife, Spain

Marcel GOOSSENS

Centre mathematical Plasma Astrophysics, KU Leuven, Belgium
I. Arregui

Instituto de Astrofisica de Canarias, La Laguna, Spain.

TAP P7/08 Charm
KU Leuven GOA /2015-014
FWO Vlaanderen



1.Damped standing and propagating transverse MHD waves I

e Standing transverse MHD waves in coronal loops (Schrijver et al. (1999);
Aschwanden et al. (1999)).

e Propagating transverse MHD waves (COMP (Tomczyk et al. 2007),
SDO/AIA (MclIntosh et al. 2011)).

e Transverse waves = kink waves (m = 1) (Nakariakov et al. (1999).
e Rapid damping: resonant damping 7 definitely at work.

e Exponential damping (eigenmode analysis) / Gaussian damping.

For that’s the attraction of the conference circuit: it’s a way of
converting work into play, combining professionalism with tourism.
Write a paper and see the world.

Small World

David Lodge




2. Resonantly damped MHD waves on flux tubes / Eigenmodes.'
2.1 Equilibrium and spatial and temporal dependence of Wavesl

e Cylindrical plasma column in static equilibrium.

@ Loopofradius R: 0<r<R:i;r>R:e

e System of cylindrical coordinates (7, z, ¢).

e Equilibrium magnetic field By = B, 1., equilibrium density py(r).

e Wave variables.

® exp(—iwt), exp(i(my +k,z)) m,k. = azimuthal and axial wave numbers.
e Kink modes m =1

e Eigenmodes: dispersion relation DR(w,m, k., ng) = 0.

Eigenmodes: exponential damping'




2.2 Resonant damping of kink MHD waves due to non-uniformity. I

e Inhomogeneity in interval b=R—-[/2<r<a=R+1/2
e py varies from p; to p, in interval [R —1/2, R+1/2].
e wi(r) = local Alfvén frequency
(k- B)?
wa(r) = = k2 vi(r)
ppo(r)

e vy = the local Alfvén velocity, v%(r) = B*/(u po(r)).
e w, varies from wy; to wy, in interval [R —1/2, R+1/2].
e See e.g. Fig 4 of ER1983

Vai < w/k, <Vae, wai <w < Wi

e Replace the discontinuous variation of w, by a continuous variation.

e Classic kink (m = 1) mode is always resonantly damped.
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e Non-axisymmetric (m > 1) waves with w in AC undergo resonant damping.

e Standing waves: real wave number k,: complex frequencies w.

exp(—iwt), w = wpr+ iy
exp(—iwt) = exp(—iwgt) exp(yt) = exp(—iwgt) exp(—t/1y)

v = the decrement, 7, =1/ |y | = the damping time.
Phase velocity v,, = w/k..

Eigenmodes: exponential damping'

3. Direct problem for exponential damping.'
3.1 How to compute resonantly damped eigenmodes.'

e P and 7p are determined by py(r),py(r) and B, .

e Direct problem: py(r),py(r) and B, are specified a priori.
e P and 7p are computed.

e Numerical code / Generalized Frobenius method / Connection formulae.



3.2 Analytic dispersion relation I

e Use connection formulae: SGH-method.
e The thin boundary (TB) approximation: [/R << 1.
e The thin tube (TT) approximation.

e Standing waves (long wavelength approximation): k. R << 1.

e Dispersion Relation / Eq 74 of GHS1992.

e A = key quantity.

e Dispersion Relation relates frequency w and wave number k..



Standing waves. I

e Fix k. and solve for w (GHS1992, RR2002, GTAAB2009).

2 2
i W+ Pew
o = PETP e _ g2
pi+pe
2 2 2 2 \2
. w w
/y — _’m|ﬂ- pre 3( A,G A,Z) :Eq. 77 GHSl992
2R p(ra)(pi+pe)” |wr || A

e v, is kink velocity vi = (B? + B?)/(u(p; + pe))

e Equal and constant magnetic fields B, = B. = B

P = 7y \/§ {Cgl}l/Q

1/2
¢= Pz‘/ﬂe, TAi = L/UAz', V4 = B/\/,upia Uk = \/5 VAi (Cj—l)

e [, = the length of the loop.



Exponential damping rate v and exponential time TDI

e T'TTB approximation: Effect of the non-uniform layer on the damping is
contained in the value of A. i.e. the derivative of w?(r) at r4 .

e Take equal and constant magnetic fields B, = B. = B in Eq. 77 GHS1992.
e See equation (31) of Goossens et al. 2009

e Effect of the non-uniform layer is determined by

dpo
(dr)m

e Characterize the variation of density in the non-uniform layer at the pos-
tion 4, by quantity G

R dpo

GZ(/)i_pe) G )ra




e Damping rate and damping time 7p

e For a given (, 7p/P is determined by the dimensionless quantity G.
e Direct problem: the equilibrium configuration is freely choosen.

e Confine variation of density to a layer of thickness [ with steepness a (VD
et al. 2004)

e Same value of 7/P for infinitely many couples («o,[/R).

e {(7p/P), for a layer with thickness (I/R);, } = {(7p/P)s for a layer with
thickness ([/R); x 7w/2 } and vice versa.



e Direct problem: o and [/R are prescribed.

e Inverse problem: cannot distinguish between different couples of («,l/R).

m 1 4 a (+1
P |m|=wIl/R (-1

e o = 1 for linear variation (see Eq. 79b GHS 1992), a = 7/2 for a sinusoidal
variation (see RR 2002).

e Big success! Explains rapid damping of standing transverse waves!
e Example a =7/2, p;/p.=5, |/R=1/4, /T =12/n~4

e Fast damping predicted about a decade before it was observed.



4. Direct problem for Gaussian damping.'
4.1 Propagating Waves.l

e First studied by Pascoe et al. 2012 in numerical simulations.

e Hood et al. 2013: Analytical theory for propagating waves.
e TTTB approximation and a linear variation of density: a = 1.

e Analytical expression for the Gaussian damping length L.

pZM1GHY
“TUREP\(-1

e Pascoe et al. 2013: expression for height hs of the switch of the Gaussian

to the exponential profile.
4.2 Standing Waves.I

e Analytical theory for temporal (Gaussian damping of standing waves by
Ruderman and Terradas 2013.

e TTTB approximation and a linear variation of density (a = 1).

e No analytical expressions for 74, tg.

e MVD2016: Numeric simulations / Pascoe et al. 2016: Observations



5. Seismology for standing waves of coronal loopS.I

e Initial evolution: Gaussian damping.

e No theoretical expressions on Gaussian damping of standing waves

“I’ve done everything the Bible says. Even the stuff that contradicts the
other stuff. What more can I do? ”
N.F. The Simpsons

5.1 Limitations. I

e Period P and the damping times 7, 7; are determined by: po(7), po(r), Bo(r).
e Helio-seismology is a big success.
e Big difference between helioseismology and seismology of coronal loops.

e Seismology of coronal loops is not able to determine the radial structure
of equilibrium.

e Only a few characteristic quantities can be determined. No unique solution
for equilibrium.

e Reduced seismological problem.



5.2 Many solutionSI

e Recall equations for P and 7p

P_ 5 {CH}” ™ _ 4
T A ¢ P g2

(+1 o)
(-1 “7

e 2 observables: period P and damping time 7p
e 4 unknown equilibrium quantities: (,74;,l/R, «
e 2 equations for 4 unknowns: an underdetermined system.

e 02 solutions

5.3 Different cases I

e Observed values of period.
e 1 equation and 2 unknowns: ( = p;/p. and T4, = L/va;.
e oo! solutions.
e Nakariakov and Ofman 2001: p;/p. = 10 ; single solution for 74;.

e Choose value for L and p; and determine an estimate for B.



® Observed values of damping times.
e 1 equation and 3 unknowns: (, [/R and a (G =«a/(l/R) ).
e oo? solutions.
e Prescribe o and ( and find single solution for [/R or vice versa.

e Ruderman and Roberts, 2002 and Goossens et al. 2002 : p;/p. = 10
and « = 7/2 (sinusoidal variation).

® Observed values of periods and damping times.
e 2 equations and 4 unknowns: 74; = L/vy;, ¢, [/R, and «a.
e oo’ solutions.
e Arregui et al. 2007 and Goossens et al. 2008 : « = 7/2.
e 2 equations for 3 unknowns: oco! solutions.

e Recover results by the use of a linear variation of density and non-
uniform layers with thickness (I/R);, = (I/R)s x (2/7).

® Reduced seismology: oo solutions.

e Single solution : prescribe values of unknown quantities, e.g. «, p;/pe.






6. Bayesian Inference for exponential time damping'
6.1 Inference for ¢ and Z/RI

e 2-dimensional joint probability density function.
e 1-dimensional cuts for fixed [/R and fixed (.

e Marginal posteriors for ¢ and [/R

6.2 Inference for a and GI

40+l o
P _w2g—1G’ G_(Z/R)

e Marginal posteriors for a and G
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Fig. 1. Results from the comparison of inferences using two values of @ in Eq. (16). (a) and (b) show the two-dimensional joint posteriors in the
(£, I/R) parameter space for @ = 1 and @ = /2, respectively. (c) and (d) show one-dimensional cuts of the joint posteriors along fixed values of
I/R = 0.6 and £ = 3, respectively. Same line-styles are used to identify cut directions in (a) and (b) with the corresponding results in (c¢) and (d).
The vertical solid lines in (c) and (d) show the algebraic inversion results using Eq. (16) and the fixed values of I/R = 0.6 in panel (c) and { = 3 in
panel (d). (e) and (f) show the marginal posteriors for £ and I/R, respectively. In these calculations r = 7p/P = 2 and o = 0.1r.



6.2 Inference for a and G. I
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Fig. 3. Marginal posteriors for (a) @ and (b) G for different values of the damping ratio r = 7,/P obtained by inversion of Eqs. 16 and (13) and by
considering them as additional parameters together with £ and //R. In (a) the vertical dashed lines indicate the values @ = 1 (linear density model)
and @ = xr/2 (sinusoidal density model). The mean and error at 68% credible intervals for the posteriors in (a) are: @ = 4.6°}3 for r = 2; @ = 6.9°2%
forr = 3;@ = 9.2°3% for r = 4; and @ = 11.53% for r = 5. The mean and error at 68% credible intervals for the posteriors in (b) are: G = 3.5°0%
forr=2;G=53"forr=3;G="7.19%forr=4;and G = 8.9°Y] for r = 5. In all computations the error in damping ratio is fixed to o = 0.2.



7. Conclusions I

e Reduced seismology.

e Characteristic quantities.

e oo many solutions even to the reduced problem.

e Single solution: prescribe values for unknown quantities.
e Bayesian analysis.

e Gaussian damping of standing waves: analytical expressions for 7, tg

“Has anything escaped me?” I asked with some self-importance.
“I trust that there is nothing of consequence which I have overlooked?”
“I am afraid my dear Watson, that most of your conclusions were erroneous.”

The Hound of the Baskeruvilles.
A. Conan Doyle.




