Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points
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Abstract: A set of 23 observations of coronal jet events that occurred in
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Analysis of the Results
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We used data from the Atmospheric Imaging Assembly (AlIA) on board of the
Solar Dynamic Observatory (SDO). The SDO/AIA data are retrieved, processed,
and analyzed using standard procedures with the SolarSoft package.

We have studied BPs and Cls situated within and at the edges of the CHs. The
CHs have been chosen from different areas of both hemispheres, during the
period from 2015 December 1 until 2016 May 1. In total, we investigated 23 Cls
using SDO/AIA 193 A channel images.
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Figure 1. Sample BP before and during CJ ejection process. The top three rows represent overlap of
SDO/AIA 193, 304, and 171 A intensity images and SDO/HMI photospheric magnetograms. The bottom
row represents HMI magnetogram separately. Blue and yellow contours indicate positive and negative
magnetic field polarities, respectively. These regions are also indicated with arrows in the bottom row of
panel (a). Panel (a): the beginning of precursor; panel (b): the peak of the precursor brightening; panel
(c): the time after the precursor when still there is no signature of main jet outflow; panel (d): the
moment when the structure is destabilized and the jet-type instability starts; panel (e): the fully
developed transient jet outflow. In panel (e), we take a wider observational window as shown on the
corresponding axes.

We created two types of 193 A intensity curves (Figure 2). The first type of data
(data set 1) comprises the calculation of the mean intensity values of the entire
cutout BP-boxes. The second type of data (data set 2) is created using the
average over all pixels of modified intensity value cutout BP-boxes obtained
through noise deduction. Consequently, in data set 2, the effect of background
noise is removed and all the transient disturbances are more sharply
observable. Examples of brightness evolution curves are shown in the top
panels (CJ1) and (CJ2/CJ3/Cl4) of Figure 2.
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set 2) solid-line parts of the curves indicate precursors events. Accordingly, we plot zooms of these
parts in the detrended form in the bottom panels (CJ1), (CJ2), (CJ3), and (CJ4), respectively. Panels (CJ1;
top and bottom) correspond to the case of the single CJ that started at 2015 December 9 17:28 UT
with a precursor start approximately 9.8 minutes before the CJ release. While panels (CJ2/CJ3/Cl4),
(CJ2), (CJ3), and (CJ4) demonstrate the case of the recurrent CJs that started at 2015 December 30
23:16 UT, which includes three subsequent plasma ejections. Each of them has precursors starting
19.6, 7.8, and 5.6 minutes before the respective CJs. Vertical dashed lines represent the end of
precursor ignition.

Further, we plot these precursor parts zoomed in and detrended for an
isolated single (top panel (CJ1)) and for a recurrent jet event (panels (CJ2),
(CJ3), and (CJ4)). The corresponding FFT periodograms are presented in Figure
3.
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Figure 3. Set of calculated FFT periodograms accordingly corresponding to cases shown in the bottom
panels (CJ1), (CJ2), (CJ3), and (CJ4) of Figure 2. The coloring is the same as in Figure 2, and horizontal
blue and red dashed lines represent 95% confidence levels for data set 2 and data set 1, respectively.
The spectral powers are normalized on the maximum power pick shown in each panel.

In the absolute majority of instances (20 out of 23) we detect a characteristic
brightening of the observed BP preceding, by a few minutes, the main jet
outflows. We consider these processes as CJ precursors (as shown in Figure 2).

The enhancement of the BP intensity is visible several minutes before the CJ
ejection in the case of both data set 1/data set 2 mean intensity curves. In
both cases of single and recurrent jets, the precursors are systematically
observed before each plasma ejection. In the top panel (CJ1) of Figure 2, the
existence of the precursor of the single jet event is evident (2015 December 9
17:18 UT). Besides, the set of recurrent events in panel (CJ2/CJ3/Cl4) of Figure
2 took place within the time interval from 2015 December 30 23:01 UT to
2015 December 31 00:31 UT and included three consecutive plasma ejections,
each of them had corresponding precursors.

Finally, for the 23 investigated events a precursor was found in 20 cases. The
detailed catalog of the investigated CJ parameters is presented in Table 1.

We investigated the statistical distributions of the precursor and the CJ
individual parameters. These parameters with related variance and error
estimations are presented in Table 2.
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Table 2. The CJ and corresponding precursor parameters with related variance and error estimations. tp;
represents the precursor ignition duration; tpr is the precursor total evolution time span; (t¢;)—Cl
durations, Atp,,rs—the time intervals between precursor and CJ peaks. All the quantities in the top four
rows are measured in minutes and in the bottom four rows all are dimensionless. All values are given in
accordance with the order data set 1/data set 2. In the two bottom rows, values are calculated in minutes

and only for data set 2.

Discussion and Conclusions

The key conclusion that can be drawn from our analysis is that we were able to
detect quasi-periodical oscillations with characteristic periods from sub-minute up
to 3—4 minute values in the BP brightness that precede the jets. The basic claim
that can be made at this stage of pure observational analysis is that along with the
conventionally accepted scenario of BP evolution through new magnetic flux
emergence and its reconnection with the initial structure of the BP and the CH,
certain MHD oscillatory and wavelike motions can be excited and these can take
an important place in the observed dynamics. One can even imagine that these
quasi-oscillatory phenomena might play the role of links between different epochs
of the CJ ignition and evolution. A complete understanding of this issues requires
further analytical and perhaps even numerical modeling of the processes, and
such investigations will become a matter of future more extensive studies.
However, we can make some general qualitative indications on the observed
oscillatory processes and their link with some theoretical background. The
quasioscillatory variations of intensity can be an indication of the MHD wave
excitation processes due to the system entropy variations (Shergelashvili et al.
2007) or density variations (Zagarashvili & Roberts 2002; Shergelashvili et al.
2005). The observed mutual positioning of open and closed magnetic field
structures indicates that there is very likely a sharp outflow velocity gradients at
the edges between the open and closed field line regions. All these conditions
suggest a sequence of local magnetic reconnection events that could be the
source of MHD waves due to impulsive generation or rapid temperature variations
(Shergelashvili et al. 2007), on the one hand, and shear flow driven MHD wave

excitation,
(Shergelashvili
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