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Seismology of  the Solar Atmosphere
Aim: inference of  difficult to measure physical parameters in e.g.:

  - Observations:  Wave activity in the solar atmosphere
- Theory: MHD wave interpretationCombination of: {

Coronal loops Prominences



Determination of  the magnetic field strength
coronal wave-guides

The first “modern” application of  solar atmospheric seismology was performed by 
Nakariakov & Ofman (2001)

Observations Theory
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L54 V. M. Nakariakov and L. Ofman: Determination of the coronal magnetic field by coronal loop oscillations

Consequently, we can determine the unknown physical
parameters of the corona.

The main advantages of the MHD coronal seismology
with the EUV imaging telescopes over other methods are:
(1) the precise relation of the measurement to a specific
coronal structure, and consequent high spatial resolution
(less than 1′′), (2) both on-the-limb and off-limb measure-
ments are possible, (3) determination of the absolute value
of the coronal magnetic field strength that includes all
three components.

In this letter, we discuss the possibility for determi-
nation of the Alfvén speed and magnetic field through
the analysis of flare-generated coronal loop oscillations ob-
served with TRACE on 14th of July, 1998 and 4th of July,
1999.

2. Observations of flare-generated loop
oscillations

2.1. 14th of July, 1998

The movies generated with 171 Å bandpass TRACE im-
ages taken on 14th of July, 1998 (Aschwanden et al. 1999;
Nakariakov et al. 1999) show kink-like decaying quasi-
periodic displacement of several coronal loops shortly
after a flare (at 12:11 UT, in the adjacent active re-
gion AR8270). The observational sequence with the ca-
dence time of about 75 s and the exposure time of
about 16.4 s included all stages of the oscillations. The
analysis of the intensity variation in four neighbouring
perpendicular slits near the loop apex showed synphase
transversal displacement. Considering the averaged loop
displacement as a function of time and approximating the
observationally determined dependence with an exponen-
tially decaying harmonic function, the period of the oscil-
lations was found to be about ∼256 s (Nakariakov et al.
1999). The distance between the loop footpoints was esti-
mated as ∼8.3 × 109 cm, which, for a semi-circular loop
gives the loop length of ∼1.3× 1010 cm.

2.2. 4th of July, 1999

The second example of the flare-generated loop oscilla-
tions, reported by Schrijver & Brown (2000), was less
complete. The flare was occurring at 8:20 UT, 14th of
July, 1999, when TRACE was passing through the South
Atlantic Anomaly. Unfortunately, the TRACE 171 Å ob-
servations had a gap between 8:17 and 8:33 UT and only
the very last stage of the loop oscillations was registered.
Figure 1 shows the temporal evolution of the intensity
across an oscillating loop. Three neighbouring slits taken
near the loop apex behave almost identically, suggesting
that we deal with the kink oscillations. For the elapsed
time greater then 600 s the loop displacement is not seen.
It is possible to roughly estimate the period of the decay-
ing oscillations, assuming that we observe one full cycle.
The estimation gives the period of ∼360 s. The distance
between the footpoints is ∼330 pixels. For the pixel size

Fig. 1. Evolution of the emission intensity across a coronal
loop for the event on July 4th, 1999. The observation starts at
8:33 UT.

∼360 km, it gives the loop diameter along the major axis
of ∼1.2× 1010 cm. Assuming the loop is semi-circular, we
obtain the loop length ≈1.9× 1010 cm.

2.3. Global kink modes

The natural interpretation of these phenomena is that
the loops experience kink global mode MHD oscillations.
As the main amplitude of the displacement is observed
near the loop apecis and the displacement is synphase,
we conclude that the oscillations are the global standing
mode of the loop, with the wave length double the loop
length. Taking the observed periods P and loop lengths
L (256 s and 1.30 × 1010 cm for 14th of July, 1998; 360 s
and 1.9 × 1010 cm for 4th of July, 1999), we estimate the
phase speed required as
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P
≈

{
1020± 132 km s−1 (14th July, 1998),
1030± 410 km s−1 (4th July, 1999). (1)

Possible errors of these measurements are discussed in
Sect. 5.

3. MHD modes of coronal loops

The theory of MHD modes of magnetic structures is well
developed (see, e.g. Roberts 1991). Considering a coro-
nal loop as a straight magnetic cylinder of width a, one
can connect properties of MHD modes of the cylinder
with physical conditions inside and outside the cylinder
through the dispersion relation:
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Theoretical interpretation of  transverse loop oscillations as kink mode of  flux tube

Measurement of P and L gives phase speed Long-wavelength approximation 
for phase speed

Notice that both the Alfvén speed and the density contrast are unknown!

Consider density contrast                  as parameter > obtain Alfvén speed⇣ = ⇢i/⇢e

B = (4⇡⇢i)
1/2vAi Assume ⇢i 2 [1� 6]⇥ 109cm�3 B 2 [4� 30] G

Main shortcoming: densities are assumed



Determination of  the magnetic field strength

The same method has also been applied to other magnetic and plasma structures, e.g.:

Filament threads observed 
on August 2, 2007

Swaying threads in the plane of sky

P ~  4-5 min

Vph ~ 22 km/s

SST, 2007-08-02,  Hα line center

Wednesday, October 28, 2009

application to prominence threads by Lin et al. (2009) see talk  
Montes-Solís 



A fundamental difference between coronal loops and prominence plasmas is that the 
latter are high density contrast structures
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Kink speed is independent  
of  density contrast

Lin et al. (2009) assume that thread oscillations observed from      sequences are the 
result of  propagating kink waves > measured phase speed = kink speed

Prominence Oscillations 89

Figure 68: (a) Ratio c2k/v
2

Ai (solid line) as a function of the density contrast, c. The dotted line corresponds
to the value of the ratio c

2

k/v
2

Ai for c ! 1. (b) Magnetic field strength as a function of the internal density,
⇢i, corresponding to four selected threads. From Lin et al. (2009).

techniques, once a physical model that provides an explanation is available. Among the di↵erent
damping mechanisms described in Section 5, resonant absorption in the Alfvén continuum seems a
very plausible one and has been used to perform prominence thread seismology, using the damping
as an additional source of information. In the context of coronal loop seismology, the use of damp-
ing rates in combination with oscillatory periods gives information about the transverse density
structuring of coronal loops (Arregui et al., 2007; Goossens, 2007).

The model considered here is an infinitely long thread of radius a surrounded by a thin transition
sheath of thickness l in which a smooth transition from the thread to the coronal density takes place
(see Figure 55). For standing kink waves, outside the thin tube and thin boundary approximation,
by computing the normal mode period and damping time as a function of the relevant equilibrium
parameters, the following dependencies are obtained

P = P (kz, c, l/a, vAf),
P

⌧d
=

P

⌧d
(kz, c, l/a), (39)

with vAf the internal Alfvén speed. Note that in the thin tube and thin boundary approximations
(Equation [23] for P and Equation [29] for the damping ratio), the period does not depend on
l/a and the damping ratio is independent of the wavelength. This is not true in the general case
(Arregui et al., 2008b). The period is a function of the longitudinal wavenumber, kz, the transverse
inhomogeneity length-scale, l/a, and the internal Alfvén speed. Similarly for the damping ratio,
except for the fact that it cannot depend on any time-scale. The long wavelength approximation
further eliminates the kz dependence of the damping ratio. In the case of coronal loop oscillations,
an estimate for kz can be obtained directly from the length of the loop and the fact that the
fundamental kink mode wavelength is twice this quantity. For prominence threads, the wavelength
of oscillations needs to be measured. Relations (39) indicate that, if no assumption is made on
any of the physical parameters of interest, there are infinite di↵erent equilibrium models that can
equally well explain the observations. The parameter values that define these valid equilibrium
models are displayed in Figure 69a, where the analytical algebraic expressions in the thin tube and
thin boundary approximations by Goossens et al. (2008) have been used to invert the problem.
It can be appreciated that, even if an infinite number of solutions is obtained, they define a
rather constrained range of values for the thread Alfvén speed. Because of the insensitiveness
of the damping rate with the density contrast for the typically large values of this parameter

Living Reviews in Solar Physics
http://solarphysics.livingreviews.org/

Determination of  the magnetic field strength
application to prominence threads by Lin et al. (2009)

⇢i = 5⇥ 10�11 kg m�3

B 2 [0.9 � 3.5] G

H↵

4 selected threads

see talk  
Montes-Solís 



Confronting observations and theory to infer physical parameters is not an easy task

Forward problem

Seismology involves the solution of  two different problems

Inverse problem

Cause Consequences

Theoretical models 
and parameters

Theoretical 
wave properties

Consequences Cause

Observed  
wave properties

Unknown physical  
conditions/processes

We use the rules of  probability to make scientific inference and quantify uncertainty

Under conditions in which information is incomplete and uncertain

From classic to Bayesian techniques

see Arregui (2018) for a review on Bayesian Coronal Seismology



Bayesian Data Analysis

State of  knowledge is a combination of  what is known a priori independently 
of  data and the likelihood of  obtaining a data realisation actually observed

Posterior

Likelihood function

Prior

The Astrophysical Journal Letters, 765:L23 (5pp), 2013 March 1 Arregui, Asensio Ramos, & Dı́az

Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38 ± 0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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the full posterior with respect to the rest of parameters

p(✓i|d) =
Z

p(✓|d)d✓1 . . . d✓i�1d✓i+1 . . . d✓N . (6)

The result provides us with all the information for model parameter ✓i available in the priors
and the data. This method also enables us to correctly propagate uncertainties from data to
inferred parameters.

We next specify the likelihood function and the priors. In what follows we assume the
observed data are given by d = (Lg, h), where both observed length-scales are normalized to
the wavelength. The unknowns are gathered in the vector ✓=(⇣, l/R). Under the assumption
that observations are corrupted with Gaussian noise and they are statistically independent, the
likelihood can be expressed as
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with Lsyn
g (✓) and hsyn(✓) given by Equations (3) and (4). Likewise, �2

Lg
and �2

h are the variances
associated to the Gaussian damping length and the height h, respectively.

The priors indicate our level of knowledge (ignorance) before considering the observed data.
We have adopted uniform prior distributions for both unknowns over given ranges, so that we can
write

p(✓i) =
1

✓max
i � ✓min

i

for ✓min
i  ✓  ✓max

i , (8)

and zero otherwise. For the minimum and maximum values the intervals ⇣ 2 [1, 20] and l/R 2
[0, 2] have been taken. This choice of priors expresses our belief that the unknown parameters are
constrained to those ranges, with all combinations being equally probable. We have verified that
our posteriors are insensitive to prior changes. This means that they are dominated by the
information contained in the data, that overwhelms the prior information.

The posterior is evaluated for di↵erent combinations of parameters using Bayes’ theorem.
Given that the number of model parameters is two, the computation of the marginal posteriors
using Eq. (6) can be safely done using a numerical quadrature. For this purpose, we have computed
the 1-dimensional integrals using an adaptive Gauss-Kronrod quadrature, which gives very good
precision.
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38 ± 0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38 ± 0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38 ± 0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
. (6)
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Figure 1. (a) Posterior distributions for η, under the density stratification model, for two values of the period ratio. (b) Posterior distributions for the magnetic tube
expansion, Γ, under the magnetic expansion model, for two values of the period ratio. The measured period ratio and the inferred median of the distribution, with
uncertainties given at the 68% credible interval are (a) r = 0.91 ± 0.04, η = 1.26+0.65

−0.59; r = 0.79 ± 0.03, η = 3.39+0.72
−0.64 and (b) r = 1.07 ± 0.04, Γ = 1.20+0.10

−0.12;
r = 1.38 ± 0.04, Γ = 1.87+0.07

−0.07. The improved errors on r in the measurements of Verwichte et al. (2004) have been taken from Van Doorsselaere et al. (2007). Similar
errors are assigned to the mean values in the measurements by De Moortel & Brady (2007).

Both longitudinal stratification and magnetic tube expansion
have forward models that relate one observed quantity, the
period ratio P1/2P2, to one physical quantity to be inferred,
η or Γ.

3. BAYESIAN PARAMETER INFERENCE

To perform the inference using existing estimates for the
period ratio, we employ Bayes’ theorem (Bayes & Price 1763)

p(θ |D,M) = p(D|θ ,M)p(θ |M)∫
dθp(D|θ ,M)p(θ |M)

, (3)

which gives the solution to the inverse problem in terms of
the posterior probability distribution, p(θ |D,M), that describes
how probability is distributed among the possible values of the
unknown parameter, θ , given the data D and the assumed model
M. The function p(D|θ,M) is the likelihood of obtaining a
data realization actually observed as a function of the parameter
vector and provides a measure of how well the data are predicted
by the model. The prior probability p(θ |M) encodes any prior
information we might have on the model parameters without
taking into account the observed data. The denominator is the
evidence, an integral of the likelihood over the prior distribution.
This quantity plays no role in parameter inference, but will
become central in the model comparison described in Section 4.

3.1. Longitudinally Stratified Loops

For longitudinally stratified loops, model M1, the forward
problem, is given in Equation (1). To evaluate the likelihood,
we assume that the model is true. Then, the period ratio mea-
surement (r) will differ from the prediction (r1) because of mea-
surement uncertainties (e), so that r = r1 ± e. The probability
of obtaining the measured value is equal to the probability of
the error. Assuming Gaussian errors, the likelihood for model
M1 is then expressed in the following manner

p(r|η,M1) = 1√
2πσ

exp
[
− (r − r1)2

2σ 2

]
, (4)

with σ 2 the variance associated to the observed period ratio.
In the following we assign observed period ratio errors to the
standard deviation σ .

The prior indicates our level of knowledge (ignorance) before
considering the observed data. We have adopted a uniform prior
distribution for the unknown, η, over a given range, so that we
can write

p(η|M1) = 1
ηmax − ηmin

for ηmin ! η ! ηmax, (5)

and zero otherwise. We only consider loops with density
decreasing with height. We know from observations that
very large coronal loops with the apex height above
several atmospheric scale heights exist, so we consider the range
η ∈ [0, 8] in the prior above.

Parameter inference is next performed using Bayes’
theorem (3). We use period ratio measurements reported in
observations by Verwichte et al. (2004). We must note that
unambiguous identification of measured periods with particular
overtones is a difficult task. Early observations were limited to
the measurement of different periodicities at a single point with-
out spatial information (Verwichte et al. 2004). Even in the case
in which information at different cuts along the loops is avail-
able (De Moortel & Brady 2007), it is unclear how one should
assign those periods to theoretical overtones. As our Letter
aims at providing a method to perform parameter inference
and model comparison, we have considered period ratio values
discussed in the review by Andries et al. (2009), noting that the
reliability of the results is closely related to that of the adopted
assumptions and theoretical interpretations.

Figure 1(a) shows posterior probability distributions for η
computed using Equation (3) with likelihood and prior given
by Equations (4) and (5) for two period ratio measurements
by Verwichte et al. (2004). Well constrained distributions are
obtained. For the measured period ratios r ∼ 0.79 and r ∼ 0.91,
the inversion leads to density scale heights of H = 21 Mm and
H = 56 Mm, respectively, for a loop with a height at the apex
of L/π = 70 Mm.

3.2. Expanding Magnetic Loops

For expanding loops, model M2, the forward problem is given
in Equation (2). To evaluate the likelihood, we follow the same
procedure as above, which leads to

p(r|Γ,M2) = 1√
2πσ

exp
[
− (r − r2)2

2σ 2

]
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Evidence

Bayes’ Rule (Bayes & Price 1763)

Probabilistic Inference considers the inversion problem as the task of                        
estimating the degree of  belief  in statements about parameter values



Inference of  Magnetic Field Strength - Bayesian Modelling
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Inference of  Magnetic Field Strength with Information on Density
When additional information on any of  the unknowns becomes available, the Bayesian 
framework offers a self-consistent way to include this information to update the posteriors

Consider we got some estimates for the density inside the oscillating coronal loop
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Inference of  Magnetic Field Strength  - role of  prior information
The amount of  information one is willing to include (a priori) for the density and the density 
contrast influences their corresponding posteriors, but very little the inferred magnetic field strength
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Inference of  Magnetic Field Strength  - role of  prior information
The amount of  information one is willing to include (a priori) for the density and the density 
contrast influences their corresponding posteriors, but very little the inferred magnetic field strength
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Inference of  Magnetic Field Strength with Damping 
Bayesian Modelling

Theory Observation
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Inference of  Magnetic Field Strength With Damping - Result
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Effects of  Damping on Inference 
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Summary & Conclusions

We applied Bayesian inference tools to the problem of  inferring the magnetic field 
strength and density in transversely oscillating coronal loops.       

The magnetic field strength can be inferred, even if  the densities inside and outside and 
their ratio are largely unknown.  When some information on plasma density is available, 
the method enables to incorporate this information self-consistently, further constraining 
the inference.

The effects of  damping of  transverse oscillations on the inference results were 
evaluated. Our results indicate that the information contained in the damping should 
be used, since this alters the posteriors.                                    

The methods here described can easily be applied to other magnetic and plasma 
structures, such as prominences, spicules, etc.  and implemented to propagating waves                              

Thank you


