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Solar Prominence oscillations

-Prominences:

Relatively cool, dense plasma structures suspended in the

solar corona

-Prominence oscillations:

Damped oscillations

Small amplitude oscillations: v < 10 km s-1

Large amplitude oscillations: v ≈ 10 – 100 km s-1

Periods ≈ 30 – 110min or short-period oscillations < 10 min

Td / P ~ 1-3
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MHD equations

Magnetohydrodynamics → Ideal MHD equations
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MHD equations
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𝑭𝒗
(𝒉𝒚𝒑𝒆𝒓)

= 𝝂(𝒉𝒚𝒑𝒆𝒓)𝜵
𝟒𝒖+ 𝜻𝒔𝒉𝒐𝒄𝒌

Magnetohydrodynamics → Ideal MHD equations



The Pencil Code
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• Publicly available code

• High-order finite-difference code.

• Programming language: Fortran

• Different switchable modules

• The code can use MPI

• Long list of parameters, boundary conditions and some
specific initial conditions



𝛒 = 𝝆𝟎𝐞𝐱𝐩
−𝐳

𝜦

𝚲 = Τ𝐜𝐬𝟎
𝟐 𝜸 𝐠 ≈ 𝟔𝐇

𝒄𝒔𝟎 = 𝟏𝟔𝟔 𝒌𝒎𝒔−𝟏 (𝑻 = 𝟏𝟎𝟔 𝑲)

𝒈 = 𝟎. 𝟐𝟕𝟒 𝒌𝒎𝒔−𝟐

𝛄 = Τ𝟓 𝟑

𝑯 = 𝟏𝟎𝟒 𝒌𝒎

𝐁𝐱 = 𝐁𝟎𝐜𝐨𝐬 𝐤𝟏𝐱 𝐞𝐱𝐩 −𝐤𝟏 𝐳− 𝐳𝟎 −𝐁𝟎𝐜𝐨𝐬 𝐤𝟐𝐱 𝐞𝐱𝐩 −𝐤𝟐 𝐳 − 𝐳𝟎

𝐁𝐳 = −𝐁𝟎𝐬𝐢𝐧 𝐤𝟏𝐱 𝐞𝐱𝐩 −𝐤𝟏 𝐳 − 𝐳𝟎 +𝐁𝟎𝐬𝐢𝐧 𝐤𝟐𝐱 𝐞𝐱𝐩 −𝐤𝟐 𝐳− 𝐳𝟎

𝐤𝟏 = Τπ 𝟐𝐋

𝐤𝟐 = 𝟑 Τπ 𝟐𝐋

𝐋 = 𝟓𝐇

𝐳𝟎 = −𝟎. 𝟐𝐇

Initial Configuration

𝑩𝟎 = 𝟏𝟎 𝑮
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𝒗𝑨𝟎 ≈ 𝟏𝟕. 𝟏𝑪𝒔𝟎

z0 places the null point

of the magnetic field

outside the numerical

domain
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𝝆𝒑𝒓𝒐𝒎𝒊𝒏𝒆𝒏𝒄𝒆 = 𝝆𝒑𝟎𝒆𝒙𝒑 −𝟐 Τ𝒙 𝒘𝒙
𝒏 + Τ𝒚 𝒘𝒚

𝒏
+ Τ𝒛 𝒘𝒛

𝒏

𝐧 = 𝟒 𝝆𝐩𝟎 = 𝟖𝟎

𝐰𝐱 = Τ𝟎. 𝟑 𝐇

𝐰𝐲 = Τ𝟐. 𝟐 𝐇

𝐰𝐳 = Τ𝟐. 𝟔 𝐇

Prominence mass deposition
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-High-order finite-difference code (6th)

-Equidistant grid

-Resolution:
180x144x90

-Box size:

-5/H>x>5/H -4/H>y>4/H 0/H>z>5/H

-Line-tying boundary conditions:

𝐁⊥ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐯 = 𝟎

ρ, 𝐬 → 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

Numerical tools
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𝑷 = 𝟓. 𝟔𝟑 ± 𝟎. 𝟎𝟏𝒎𝒊𝒏

𝒗𝒛
𝒄𝒔𝟎

= 𝟎. 𝟎𝟖𝟐 ± 𝟎. 𝟎𝟎𝟓 (𝟏𝟑. 𝟔 𝒌𝒎 𝒔−𝟏)

𝒕𝒅 = 𝟐𝟓 ± 𝟐𝒎𝒊𝒏

𝒕𝒅
𝑷
= 𝟒. 𝟓

Relaxation process
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Relaxation process: dependence of period on wx and ρp0/ρ0

P increases with wx and ρp0/ρ0
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Relaxation process: resonant absorption

The smoother the PCTR, the stronger the attenuation.
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Longitudinal oscillations

𝒗 = 𝒗𝒑𝒆𝒙𝒑 −𝟐 Τ𝒙 𝒘𝒗𝒙
𝟒+ Τ𝒚 𝒘𝒗𝒚

𝟒
+ Τ𝒛− 𝒛𝒊 𝒘𝒗𝒛

𝟒 ෞ𝒆𝒙

𝒗𝒑 = 𝟎. 𝟎𝟓𝒄𝒔𝟎
𝒘𝒗𝒙 = Τ𝟎. 𝟑 𝑯

𝒘𝒗𝒚 = Τ𝟐. 𝟐 𝑯

𝒘𝒗𝒛 = Τ𝟏. 𝟏 𝑯
𝒛𝒊 = Τ𝟏. 𝟑 𝑯
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Longitudinal oscillations

The period of oscillation varies with the radius
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Longitudinal oscillations: dependence on wx

The period of oscillation increases with the width of the structure

𝒘𝒙/𝑯 = 𝟎. 𝟐𝟓

𝒘𝒙/𝑯 = 𝟎. 𝟑

𝒘𝒙/𝑯 = 𝟎. 𝟑𝟓

𝒘𝒙/𝑯 = 𝟎. 𝟒

𝒘𝒙/𝑯 = 𝟎. 𝟒𝟓

𝒘𝒙/𝑯 = 𝟎. 𝟓
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Longitudinal oscillations: dependence on wx

The period of oscillation increases with the width of the structure

𝒘𝒙/𝑯 = 𝟎. 𝟐𝟓

𝒘𝒙/𝑯 = 𝟎. 𝟑

𝒘𝒙/𝑯 = 𝟎. 𝟑𝟓

𝒘𝒙/𝑯 = 𝟎. 𝟒

𝒘𝒙/𝑯 = 𝟎. 𝟒𝟓

𝒘𝒙/𝑯 = 𝟎. 𝟓

𝐏 =
𝟐π

𝒈
𝑹
+

𝒄𝒔𝒄
𝟐

𝒍(𝑳 − 𝒍)𝝌

(Luna et al. 2012)
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Longitudinal oscillations: dependence on ρp0/ρ0

𝐏 =
𝟐π

𝒈
𝑹 +

𝒄𝒔𝒄𝟐

𝒍(𝑳 − 𝒍)𝝌

The period of oscillation increases with the density contrast of the structure

𝝆𝒑𝟎/𝝆𝟎 = 𝟔𝟕

𝝆𝒑𝟎/𝝆𝟎 = 𝟖𝟎

𝝆𝒑𝟎/𝝆𝟎 = 𝟗𝟑

Luna et al. 2012
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Transverse oscillations

𝒗𝒑 = 𝟎. 𝟐𝒄𝒔𝟎

𝑷 = 𝟗. 𝟒𝟏 ± 𝟎. 𝟎𝟐 𝑨 = 𝟏. 𝟏𝟒 ± 𝟎. 𝟎𝟑 𝑴𝒎

𝒕𝒅 = 𝟏𝟏. 𝟗 ± 𝟎. 𝟑
𝒕𝒅
𝑷
= 𝟏. 𝟑

Very strong

attenuation
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Transverse oscillations: resonant absortion

𝒏 = 𝟒 →
𝒕𝒅
𝑷
= 𝟏. 𝟑

𝒏 = 𝟐 →
𝒕𝒅

𝑷
= 0.7

𝒏 = 𝟔 →
𝒕𝒅
𝑷
= 𝟏. 𝟗

The smoother the PCTR, the stronger the attenuation.
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• Part of the attenuation of the vertical oscillations is due to the conversion of energy of the

transverse motions into localized motions at the lateral edges of the prominence. This is the

resonant absorption process. We have verified that the wider the transition region, the

stronger the damping.

• For longitudinal oscillations we have that the pendulum model is a first approximation of the

motion. The gas pressure gradient contributes to the restoring force, specially for flat magnetic

field lines.

• The attenuation of longitudinal motions for our simulations is most probably due to artificial

viscosity.

• A deeper study on the attenuation of transverse oscillations will be necessary. A more detailed

parametric study will also be necessary in order to understand the restoring forces and the
damping mechanism.

Conclusions


