Exoplanet search and characterization with the proposed POET Canadian space mission

Stanimir Metchev
(The University of Western Ontario, Canada)

Collaboration:

J. Rowe, K. Hoffman, P. Miles-Páez, S. Lambier, R. Cloutier, H. Ishikawa, JJ Kavelaars, M. Kunimoto, D. Lafrenière, C. Lovekin, E. Pilles, J. Ruan, J. Sabarinathan, G. Wade, P. Wieger, F. Grandmont, A.-S. Poulin-Girard, S. Grocott, R. Zee, J. Dupuis, P. Langlois, J. Roediger

Small stars offer the best opportunity for rocky planet transit detection

Sun: 5770 K

red dwarf star 2800 K

brown dwarf 2000 K brown dwarf 1000 K

Jupiter 170 K

Earth

Earth transiting in front of red / brown dwarf: 1% transit depth

- Red / brown dwarfs make up 75% of all stars in the Milky Way.
- However, their intrinsic faintness makes them challenging.

brightnes

Earth transiting in front of Sun: 0.008% transit depth

time

Solution: POET

A space telescope for exoplanets around small stars

- POET: Photometric Observations of Exoplanet Transits
- Aperture: 20 cm, off-axis, 1 deg FOV
- Simultaneous imaging:
 - nUV (300–400 nm; CMOS)
 - VNIR (400–900 nm; CMOS)
 - SWIR (900-1700 nm; InGaAs)
- Science:
 - 80% dedicated to exoplanets
 - 20% general astrophysics
- Anticipated launch: 2029; 2+ year mission
- A top-ranked priority in the Canadian Astronomy Long Range Plan 2020–2030

spacecraft bus (60 x 60 x 60 cm) with telescope

telescope (D = 20 cm)

sun-synchronous low-Earth (~600 km) orbit

Dauntless spacecraft bus (shown: LEO 2 communications satellite)

Telescope prototype (see paper 13602-6, Pelletier-Ouellet et al.)

At Western University (London, Ontario):

- Western Space Institute satellite communications upgrade
- Small-satellite lab upgrade (Engineering)
- Infrared remote-sensing lab (Engineering / Science)

POET: equipment and infrastructure

Satellite communications

POET:

optimized for red dwarf exoplanets

Exoplanet space missions 2025 – 2030

POET Optimization:

- photometric-only observations: maximum sensitivity
- 900 nm 1700 nm band pass: peak in red dwarf brightness
- 80% focus on exoplanets: dedicated resource

POET: Science Goals

- 1. Atmospheric characterization of known transiting planets:
 - from super-Earths to Jupiters
 - nUV (300 400 nm) photometry complements longer-wavelength HST, JWST observations
- 2. Discovery of rocky exoplanets around ultracool dwarfs:
 - some the nearest transiting Earth-sized planets
 - planets in <2-week orbits, potentially in the habitable zone
 - could yield the best prospects for atmospheric and biosignature characterization with JWST

POET Science Goal 2: Exoplanet Discovery

- SWIR (900 nm 1700 nm) channel
- Single transits of an Earth-sized planet are detectable for I < 13 mag or J < 13 mag stars.
- However, >M6 ultra-cool dwarfs have colors of I-J>2.6 mag.
- Observing at J band (1.2 micron) could allow >2x more targets.

Simulated Earth-sized planet transits around a $0.08\,M_{\rm Sun}$ star. Transits are detectable with POET on sufficiently bright ultra-cool stars. SWIR wavelengths provide a 2x better sensitivity and planet yield.

The POET input catalog of ultra-cool dwarfs: selecting the dimmest, closest and reddest stars

- bright enough for POET
- nearby (< 100 pc)
- ultra-cool: spectral type M6 or later
 - using $G G_{RP}$ and G J colors as a proxy for spectral type
 - $T_{\rm eff}$ < 2700 K (Sun is 5700 K)

The POET input catalog of ultra-cool dwarfs: validation – remove unresolved binaries

Validation

- remove likely binary stars that are spatially unresolved in Gaia
- >3200 candidate POET targets
- Transit geometry optimization
 - seek targets seen nearly equator-on ($i \sim 90 \text{ deg}$)

$$\sin{(i)} = rac{v \sin(i)}{P/(2\pi R)}$$

• Stellar radius R

$$\chi_r^2 = \frac{1}{N-2} \sum_{i=1}^{N} \left[\frac{(O_i - MY_i)^2}{\sigma_i^2 + \sigma_M^2} \right]$$

N = # of photometric points

 O_i = observed flux

M = free-parameter multiplicative factor

 Y_i = theoretical flux predicted by the model

 σ_i = uncertainty of the data

 $\sigma_M = a$ systemic uncertainty

$$M=\left(rac{R}{D}
ight)^2$$

- Stellar radius R
- Rotation period P
 - using TESS, Kepler, K2 or ground-based telescope photometry

TESS light curve of an optically faint (T = 14.4, G = 16.2) ultra-cool dwarf.

- Stellar radius R
- Rotation period **P**
- Projected rotational velocity $v \sin(i)$ (high-dispersion spectroscopy)
 - required to determine stellar inclination i

$$\sin{(i)} = rac{v \sin(i)}{P/(2\pi R)}$$

- Stellar radius R
- Rotation period **P**
- Projected rotational velocity v sin(i) (high-dispersion spectroscopy)
 - required to determine stellar inclination *i*

$$\sin{(i)} = rac{v \sin(i)}{P/(2\pi R)}$$

- Stellar radius R
- Rotation period **P**
- Projected rotational velocity v sin(i) (high-dispersion spectroscopy)
 - required to determine stellar inclination i

$$\sin{(i)} = rac{v \sin(i)}{P/(2\pi R)}$$

- Stellar radius R
- Rotation period **P**
- Projected rotational velocity v sin(i) (high-dispersion spectroscopy)
 - required to determine stellar inclination i

$$\sin{(i)} = rac{v \sin(i)}{P/(2\pi R)}$$

- Stellar radius R
- Rotation period **P**
- Projected rotational velocity v sin(i) (high-dispersion spectroscopy)
 - required to determine stellar inclination *i*

$$\sin{(i)} = rac{v \sin(i)}{P/(2\pi R)}$$

The SWIR advantage for POET

Simulation results: 100% higher yield of 0.5–1.5 Earth-radius planets in SWIR vs. VNIR.

Credit: Paulo Miles-Páez (CAB)

Magnitude distribution of host stars and

POET's rocky planet yield over one year of observations: 2-10 new Earth-sized planets

- Could be the best targets for seeking life-supporting atmospheres
 - similar to or more suitable than Trappist-1 planets
- Assumptions
 - SWIR observations (2 x lower yield for VNIR)
 - 80% duty cycle and 25% GO time (i.e., 220 days of observations over a year-long campaign)
 - sample of 110–220 high-inclination ultra-cool stars, continuously observed for 2–1 days.
- Caveats:
 - conservative planet-size distribution, centered on 1.1 Earth radii (Ment & Charbonneau 2023)
 - conservative duty cycle and GO time assumptions
 - uncertainties in VNIR and SWIR detector sensitivity.
 - single-planet systems, while transiting planets around cool stars are most often in >2x multiple systems.
- Factor of 3 5 higher yields (6 10 planets) anticipated given above caveats.

Metchev, Co-PI red / brown dwarfs

Rowe, Co-PI exoplanets

POET: science team expertise

Cloutier exoplanets, theory

Kunimoto exoplanets

Miles-Páez red / brown dwarfs

Kavelaars solar system, data management

Wade white dwarfs

Lovekin massive stars

Mount

Allison UNIVERSITY

Sabarinathan satellite engineering

Exoplanet search and characterization with the proposed POET Canadian space mission

- D = 20 cm, $1 \deg FOV$
- Simultaneous imaging:
 - nUV (300–400 nm; CMOS)
 - VNIR (400–900 nm; CMOS)
 - SWIR (900-1700 nm; InGaAs)
- Transiting exoplanet focus
- Proposed launch: 2029

Extra slides

The SWIR advantage for POET

- Realistic S/N simulations for the POET input catalog of ultra-cool dwarfs in the VNIR and SWIR bands:
 - >3x higher SWIR S/N for 1500 K brown dwarfs
 - higher SWIR S/N for 2500 K ultra-cool dwarfs at G < 17 mag.

Spacecraft

Contributions

Total
Budget:
\$30M

POET: equipment and infrastructure

Satellite communications

The challenge: discovering extrasolar life

Step 1: Discover Earth-like exoplanets

Step 2: Detect existence of atmosphere

Step 3: Detect disequilibrium biochemistry

no biochemistry

Jupiter-sized planet around a Sun-like star

1% transit depth

0.01% (100 ppm) transit depth differences

Earth-sized planet around a Sun-like star

0.008% (80 ppm) transit depth

<1 ppm transit depth differences

???

Earth-sized planet around a red dwarf star

0.5% - 1% transit depth

0.005% - 0.01% transit depth differences

???