

Photometric Ultracool dwarf catalogue in

Euclid's Q1 data release

arXiv:2503.22497

euclid

Maruša Žerjal Carlos Domínguez-Tagle Eduardo Martín

Nafise Sedighi Nikola Vitas And others

A point-source catalogue

Morphology

- Ellipticity
- Mumax_minus_mag (extended/point source separation)

A point-source catalogue

Morphology

- Ellipticity
- Mumax_minus_mag (extended/point source separation)

Quality

- Det_quality_flag < 3
- S/N > 4

A point-source catalogue

Morphology

- Ellipticity
- Mumax_minus_mag (extended/point source separation)

Quality

- Det_quality_flag < 3
- S/N > 4

A point-source catalogue: VIS detection required

Number of detections

5306 UCD candidates in Euclid, 1200 L and T dwarfs (26 T dwarfs spec. confirmed)

Surface density: 100 UCDs per deg2; this is lower limit

Future: more than 1.5 million UCDs, and more than 300,000 L and T dwarfs in the Wide Field Survey

For comparison:

 Dark Energy Survey: 20 000 <u>candidates</u> (dal Ponte et al. 2023), surface density 4 UCDs per deg2

A point-source catalogue: VIS detection required

Spectroscopic confirmation

- Spectra for ~90% of candidates
- 1111 more with UCD features (Vitas et al., in prep)
- 546 objects with SpT
 (Dominguez-Tagle et al. 2025)
- → If we detect more than 1 million UCD candidates photometrically, we can expect >10% (>100 000) to be confirmed by Euclid's spectra

SpT - colour relations

Empty circles: variable objects? L/T transition

SpT - colour relations

SpT	$I_{\scriptscriptstyle\rm E}-Y_{\scriptscriptstyle\rm E}$	$I_{\scriptscriptstyle m E}-J_{\scriptscriptstyle m E}$	$I_{\rm E}-H_{\rm E}$	$Y_{\scriptscriptstyle m E}-J_{\scriptscriptstyle m E}$	$Y_{\rm E}-H_{\rm E}$	$J_{\scriptscriptstyle m E}-H_{\scriptscriptstyle m E}$
M7	2.65	2.97	3.09	0.29	0.39	0.11
M 8	2.72	2.97	3.08	0.30	0.42	0.12
M9	2.74	2.99	3.09	0.30	0.43	0.13
LO	2.74	3.02	3.12	0.29	0.42	0.12
L1	2.76	3.07	3.18	0.30	0.42	0.12
L2	2.80	3.13	3.25	0.30	0.42	0.12
L3	2.85	3.20	3.36	0.32	0.45	0.14
L4	2.93	3.29	3.48	0.35	0.52	0.18
L5	3.02	3.38	3.62	0.38	0.61	0.24
L6	3.12	3.49	3.78	0.43	0.73	0.32
L7	3.21	3.60	3.95	0.49	0.87	0.41
L8	3.29	3.73	4.13	0.55	1.00	0.48
L9	3.35	3.86	4.30	0.61	1.10	0.54
T0	3.38	3.99	4.47	0.67	1.16	0.56
T 1	3.40	4.12	4.61	0.72	1.14	0.52
T2	3.42	4.26	4.72	0.75	1.04	0.41
T3	3.46	4.39	4.78	0.76	0.85	0.25
T4	3.55	4.51	4.79	0.74	0.59	0.03
T5	3.75	4.63	4.72	0.68	0.31	-0.20
T6	4.11	4.74	4.57	0.56	0.08	-0.38
T7	4.72	4.83	4.31	0.38	0.01	-0.41

T8

T7

T6

T5

T4

T3

T2

T1 T0

L9

L8 L7 L6 L5 L4

L3 L2

L1 L0

Μ9

M8 M7

M6 M5

Spectral type

Cross-match with DES (dal Ponte et al. 2023)

Spectrophotometric distances: preliminary results

Photometric spectral type

Empirical absolute magnitude vs SpT relation

Empirical relation: https://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt

Cross-check with Gaia

Distance distribution

Key takeaways

- Euclid passbands useful for UCD candidate search
- Higher-purity sample of 5306 candidates to trace the parameter space
- Candidate UCD sky density: 100 UCDs per square degree
- SpTs can be determined for about 10% of the candidates (brightest); UCD features in 25% of candidate spectra

TODO:

- Expand the search to the completeness limit, and NISP only
- Cross-match with other surveys: proper motions, reduced contamination

DR1 expectation:

- + >160,000 UCD candidates
- + >16,000 spectroscopically confirmed
- + 40,000 spectra with UCD features
- Deep Fields: Repeated
 observations → deeper; variability
- Will enable field IMF study
- + Halo brown dwarfs?
- + Y dwarfs?

Thank you for your attention!

Additional slides

