

Characterizing the First Field Brown Dwarf Binary Discovered with Euclid

Brown Dwarfs Keep Their Cool: 30 years of Substellar Science

September 4th 2025

Sara Muñoz Torres, PhD @ IAC

Eduardo L. Martín, Maruša Žerjal, Jun-Yan Zhang (Jerry), Víctor J. Sánchez Béjar, Carlos Domínguez-Tagle & Nikola Vitas

Brown Dwarfs

in binary systems

Field BDs binary fraction: $\sim 5\%$ - 25%

Multiplicity may be higher in the L/T transition

C. Fontanive et al. (2023)

Brown Dwarfs

in binary systems

→ Field BDs binary fraction: ~ 5% - 25%

→ Multiplicity may be higher in the L/T transition

- → Median separation ~ 4 AU, very few systems wider than 20 AU
- → Discover wide field binaries could provide useful insight on formation and evolution of BDs

Softich, E., et al. (2022)

Our Study From Peculiar Spectrum to Binary System

Images & Catalogue – Euclid VIS+NISP instruments

		wavelengthrange	Pixei Size
Euclid Quick Release (Q1) images and catalogue	VIS	5500 – 9000 Å	0.1 arcsec
	Υ	9200 – 11460 Å]
	J	11460 – 13720 Å	0.3 arcsec
	Н	13720 – 20000 Å	

Images & Catalogue – Euclid VIS+NISP instruments

		Wavelength range	Pixel Size
Euclid Quick Release (Q1) images and catalogue	VIS	5500 – 9000 Å	0.1 arcsec
	Υ	9200 – 11460 Å]
	J	11460 – 13720 Å	- 0.3 arcsec
	Н	13720 – 20000 Å	

Spectra - target and templates (L4, L7, L9, T0, T1)

Euclid – NISP instrument GTC – EMIR spectrograph

Spectral coverage	Exp. Time		Spectral coverage	Int. Time	Exp. Time	ABBA throw
12000 – 19000 Å	2200 s	YJ	8900 – 13400 Å	200 s	2400 s	6 arcsec
		НК	14500 – 24300 Å	160 s	2560 s	6 arcsec

- 1. Deblend the objects
- 2. Astrometry characterization
- 3. Photometry
- 4. Infer the best spectral combination

September 2025

1. Deblend the objects

- → Binary components partially blended
- → Image rotated + self-subtracted
- → Centred on secondary to isolate primary flux and vice versa

- 2. Astrometry characterization
- 3. Photometry
- 4. Infer the best spectral combination

Original

1. Deblend the objects

- → Binary components partially blended
- → Image rotated + self-subtracted
- → Centred on secondary to isolate primary flux and vice versa

- 2. Astrometry characterization
- 3. Photometry
- 4. Infer the best spectral combination

Original

1. Deblend the objects

2. Astrometry characterization

- → Centroid determination
- \rightarrow Derive angular separation, θ
- → Calculate **physical separation** using a spectrophotometric distance determination

$$s = \emptyset \theta$$

3. Photometry

4. Infer the best spectral combination

Sanghi et al. (2024) relations: absolute magnitudes vs SpT

$$M = m + 5 - 5 \cdot \log(d)$$

- 1. Deblend the objects
- 2. Astrometry characterization

3. Photometry

→ Euclid catalogue fluxes to AB magnitudes:

$$m_{AB} \approx -2.5 \log_{10}\left(\frac{F_{Jy}}{3630.78 Jy}\right)$$

→ Aperture photometry on target and comparison objects

Measured flux vs. catalogue magnitudes relation

4. Infer the best spectral combination

- 1. Deblend the objects
- 2. Astrometry characterization
- 3. Photometry

4. Infer the best spectral combination

- → Combine template spectra considering flux ratios constrained by Euclid photometry (Y_E, J_E, H_E)
- → Flux normalized
- → Spectra comparison: visual, residuals & χ^2

A Euclid spatially resolved binary

Sara Muñoz Torres

A Euclid spatially resolved binary

Secondary

A wide one, consistent with the L/T transition

Angular separation 0.51 ± 0.03 arcsec

Distance 129 pc Physical separation 66 AU

52"

18h07m44.6f4.4° 44.2° 44.0° 43.8°

18h07m44.6f4.45 44.25 44.05 43.85

A wide one, consistent with the L/T transition

Angular separation 0.51 ± 0.03 arcsec

Distance 129 pc Physical separation 66 AU

			_	
	VISE	Y_{E}	J_E	H _E
Primary	24.223	20.901	20.315	19.766
	± 0.003	± 0.002	± 0.006	± 0.005
Secondary	24.517	20.907	20.40	20.358
	± 0.010	± 0.009	± 0.02	± 0.005
Flux ratio	1.312	1.005	1.09	1.765
	± 0.002	± 0.008	± 0.03	± 0.005

E271934 Inferring the Spectral Type

E271934 Inferring the Spectral Type

Inferring the Spectral Type

September 2025

Inferring the Spectral Type

K band flux ratio → 1.4

K band flux ratio → 3.8

K band flux ratio → 0.5

Inferring the Spectral Type – L7+L9

September 2025

First Field Brown Dwarf Binary discovered with Euclid

We have identified a spatially resolved wide field brown dwarf binary:

- → At a distance of ~129 pc and with a physical separation of ~66 AU
- → Which photometry and flux ratios are consistent with components in the L/T transition, as well as the spectra
- → The peculiarity of such a wide brown dwarf binary system makes it a valuable target for detailed study

First Field Brown Dwarf Binary discovered with Euclid

We have identified a spatially resolved wide field brown dwarf binary:

- → At a distance of ~129 pc and with a physical separation of ~66 AU
- → Which photometry and flux ratios are consistent with components in the L/T transition, as well as the spectra
- → The peculiarity of such a wide brown dwarf binary system makes it a valuable target for detailed study

Towards a complete characterization

Extend the spectral coverage to the optical with OSIRIS at GTC

Search for **atomic lines** (e.g. Li I) to confirm the substellar nature

Derive parameters from atmospheric and evolutionary models

Determine **proper motion and parallax** from multi-epoch observations

Sara Muñoz Torres, PhD @ IAC sara.munoz@iac.es

