Weather Report on Ross 458c

Jared Bull Elena Manjavacas

September 4, 2025

Jared Bull

September 4, 2025

Ross 458c

T-dwarf companion to binary M-dwarf primary system:

- Distance ~11 pc, Separation ~1200 AU, Age 200-800 Myr
- T8 spectral type (~700 K), Mass 9-16 M_{Jup}

We should expect this object to be cloudless...

Modeling Woes

Burgasser et al. 2010

Jared Bull

September 4, 2025

Morley et al. 2012

Modeling Woes

Gaarn et al. 2023

Is Ross 458c cloudy?

Jared Bull

September 4, 2025

More excitement...

WFC3/G141 (1.05-1.7 um)

- Amplitude ~2%
- Period 6.75 +/- 1.58 hr

Manjavacas et al. 2019

What is driving the variability on Ross 458c?*

Model Predictions

Analysis of wavelength-dependent amplitudes are key to uncovering present mechanisms

Morley et al. 2014

JWST NIRSpec PRISM is necessary!

JWST Cycle 3 GO Program 5226

5226	The Weather Forecast in a Cloudy (or not) Cool Planetary-Mass Brown Dwarf	Pl: Elena Manjavacas Co-Pls: Daniel Apai, Theodora Karalidi, Glenn Schneider, and Yifan Zhou	12	20.5/0.0	NIRSpec/BOTS	GO
------	---	--	----	----------	--------------	----

- NIRSpec PRISM, BOTS observing mode
- 880 total integrations, 69 s per integration
- Cover a minimum of 2 full rotations (16.66 hr)

Time-Resolved Spectra

Binned LCs

Distinct LC shapes across wavelengths!

Driven by:

- Clouds?
- DEQ Chemistry?
- Spots?

Can we constrain the period using one LC?

Rotational Period Constraint

Methods from Manjavacas et al. 2019:

- 1) Lomb-Scargle Periodogram
- 2) Bayesian-Generalized Lomb-Scargle
- 3) Sine-model Fitting
- 4) MC + Prayer Bead + Bootstrap Methods

How well do these periods overlap?

Periodogram Analysis

MC + Prayer Bead + Bootstrap

Rotational Period Constraint

Method	Result
Manjavacas et al. 2019	6.75 +/- 1.58 hr
Lomb-Scargle	5.65 +/- 0.05 hr
BGLS	5.66 +/- 0.08 hr
Monte Carlo LS	5.66 +/- 0.07 hr
Prayer Bead LS	5.70 +/- 0.02 hr
Bootstrap LS	5.69 +/- 0.04 hr

All periods consistent & align w/ prior constraint

What happens if we compare LCs from HST and JWST?

Long-Term Stability of T-dwarf Variability

Stable across <u>6+ yr</u> (472 rotations)!

Summary

- Distinct LC behavior across wavelengths
 - Multiple mechanisms at play?

◆ Period constraint of 5.66 +/- 0.08 hr

Obs. Window Function LS

BGLS Analysis

Model Fitting

$$F(t) = C_0 + C_1 t + \sum_{i=1}^{N} \left[A_i \sin \left(\frac{2\pi t}{P_i} + \phi_i \right) \right]$$

Model Fitting

Jared Bull

September 4, 2025

For n=3:

 $D = \sqrt{5hr} (70\% \text{ Amplitude})$

 $P_3 = ~5hr (3\% Amplitude)$