Unveiling Ultracool Dwarfs with Euclid and ATMO

Nafise Sedighi
PhD at IAC

Under the supervision of: Eduardo Martín, Mark Phillips, Isabelle Baraffe

Collaborators:

C. Dominguez-Tagle, M. Žerjal, N. Vitas, J.-Y Zhang, S. Tsilia, S. Muñoz Torres

Overview of the Workflow

Modelling

ATMO 2020 models:

- Equilibrium & nonequilibrium chemistry
- Teff: 200-3000 K, log(g): 2.5-5.5
- Solar metallicity

Introduced new ATMO models:

- Non-solar metallicities
- Adding new opacities: MgO, SiO

Modelling

ATMO 2020 models:

- Equilibrium & nonequilibrium chemistry
- Teff: 200-3000 K, log(g): 2.5 - 5.5
- Solar metallicity

Introduced new ATMO models:

- Non-solar metallicities
- Adding new opacities: MgO, SiO

Spectra:

- **Effective temperature**
- Surface gravity
- Metallicity

Overview of the Workflow

A New Era with ESA's Euclid Mission

- Wide-field near-infrared space telescope
- **Key features for UCD science:**
 - Spectroscopy: R \approx 450 (1.2–1.9 μ m)
 - Imaging: High-resolution, deep coverage

Fig. 25. EWS coverage and colour-coded yearly progress in an all-sky Mollweide projection. The blue borders enclose the 16 000 deg² RoI that contains the 13416 deg² observed sky of the EWS. Small dark regions within the EWS are masks for stars brighter than 4 AB mag.

Mellier, Y., et al. (2024)

Euclid's UCD Dataset: A Game-Changer

- Sky-wide discovery of ultra-cool dwarfs
- Atmospheric characterization in largescale
- Unlocks population-level studies and rare object discovery

What do we expect? Builds on Q1 results (15 T dwarfs)

Identifying hundreds of cool brown dwarfs

Table 7. Late-L and T dwarfs found by the spectral index search

Alias (Ref.)	SpT	Euclid ID	RA(J2000)	Dec(J2000)	$I_{ m E}$	$Y_{ m E}$	$J_{ m E}$	$H_{ m E}$
					(mag)	(mag)	(mag)	(mag)
E511520	T1:	-511520903274482292	03:24:36.5	-27:26:53.6	22.9	19.6	19.1	18.7
$E517518^{4}$	L9	-517518361295768184	03:27:00.4	-29:34:36.5	23.3	19.9	19.3	18.8
E523574	T4	-523574860290315045	03:29:25.8	-29:01:53.4	26.7	21.4	20.9	21.1
E528241	T5	-528241075263163744	03:31:17.8	-26:18:58.9	27.6	23.6	23.2	23.6
E536416	T2:	-536416224285940430	03:34:34.0	-28:35:38.6	25.4	21.5	21.2	20.9
$\mathrm{E}581332^{1}$	T7	-581332495491830038	03:52:32.0	-49:10:58.8	24.3	20.0	19.5	20.1
$\mathrm{E}597913^{1}$	T7	-597913643476826162	03:59:09.9	-47:40:57.4	24.8	20.2	19.8	20.2
$\mathrm{E}644720^{4}$	T1:	-644720877461587627	04:17:53.3	-46:09:31.5	22.9	19.5	19.2	18.9
$\mathrm{E}265716^4$	T4p	2657163304658383990	17:42:51.9	+65:50:18.2	24.4	20.5	20.1	19.8
$E266485^{2}$	T6:	2664850113649936423	17:45:56.4	+64:59:37.1	24.7	20.4	20.0	20.5
$\mathrm{E}267056^{4}$	L9:	2670569747654000953	17:48:13.7	+65:24:00.3	24.0	20.7	20.0	19.4
$E271006^{3}$	T2	2710066793674540980	18:04:01.6	+67:27:14.8	24.6	20.3	19.9	19.5
$E271934^{4,5}$	L9p	2719340730667146696	18:07:44.2	+66:42:52.8	23.8	20.4	19.9	19.5
$\mathrm{E}273015^{4}$	T1:	2730150213677979458	18:12:03.6	+67:47:52.6	23.2	20.2	19.8	19.7
E273062	T3p	2730620775659672177	18:12:14.9	+65:58:02.0	24.0	20.9	20.6	20.5
$\mathrm{E}274809^{3}$	T0	2748094058670347269	18:19:14.3	+67:02:05.0	23.3	19.4	19.0	18.7

NOTE— The object alias with no notes are discoveries by the spectral index search, the rest are: (1) two already cited in Zhang's compilation (and references therein); (2) one cited in G. N. Mace et al. (2013); (3) two already found by Žerjal et al. (in prep.); (4) six discovered by the spectral index search that were later found in the process of creating Zerjal's catalog; (5) one also included in Mohandasan et al. (in prep.). Uncertainties in the spectral classification > 1 subtype are noted by a colon; peculiar objects are indicated by "p". The magnitudes are from Zerjal et al. (in prep.).

Dominguez-Tagle et al. 2025

Euclid's UCD Dataset: A Game-Changer

- Sky-wide discovery of ultra-cool dwarfs
- Atmospheric characterization in largescale
- Unlocks population-level studies and rare object discovery

What do we expect? **Builds on Q1 results (15 T dwarfs)**

- **Identifying hundreds of cool brown** dwarfs
- **Potential detection of Y dwarfs**

Euclid's UCD Dataset: A Game-Changer

- Sky-wide discovery of ultra-cool dwarfs
- Atmospheric characterization in largescale
- Unlocks population-level studies and rare object discovery

What do we expect? **Builds on Q1 results (15 T dwarfs)**

- **Identifying hundreds of cool brown** dwarfs
- **Potential detection of Y dwarfs**

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**

- 1. Preprocessing of Euclid spectra:
- Apply QUALITY filtering
- 2. The χ^2 -based fitting across full spectrum

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**
- 2. The χ^2 -based fitting across full spectrum
- 3. Residuals and uncertainties

™ Model with Lowest X²: Teff=800, log(g)=5.5, NEQ_strong **Sum of Squared Residuals (SSR = 0.05)**

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**
- 2. The χ^2 -based fitting across full spectrum
- 3. Residuals and uncertainties

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**
- 2. The χ^2 -based fitting across full spectrum
- 3. Residuals and uncertainties

Model with Lowest X²: Teff=1100, log(g)=4.5, Z= -0.5, CEQ (SSR = 0.09)

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**
- 2. The χ^2 -based fitting across full spectrum
- 3. Residuals and uncertainties

- 1. Preprocessing of Euclid spectra:
- **Apply QUALITY filtering**
- 2. The χ^2 -based fitting across full spectrum
- 3. Residuals and uncertainties

Model with Lowest X²: Teff=2500, log(g)=4.0, Z= -0.5, CEQ (SSR = 0.06)

Effective Temperature vs. Spectral Type

• Temperature trend: Effective temperature decreases steadily from late-M to T dwarfs.

Effective Temperature vs. Spectral Type

 Temperature trend: **Effective temperature decreases steadily** from late-M to T dwarfs.

This work (blue circles):

- **Predict effective temperatures of T** dwarfs with high precision.
- Show offsets for L and M type.

Future Steps

- Presenting the new grids of atmosphere models for different metallicities with new included opacities
- Generating the models with non-equilibrium with extended metallicity range
- Fitting other models which include clouds and dust such as Sonora, BT-SETTL
- Comparing the models with a larger sample of spectroscopic data including Euclid DR1
- Generating models with different C/O ratio
- **Evolutionary models**

Take-Home Message

- Euclid provides spectra of large UCD samples, enabling statistical studies of metallicity.
- ATMO models predict effective temperatures of T dwarfs with high precision, including equilibrium and non-equilibrium chemistry.
- The solar metallicity is the most common result as expected and its evenly distributed across all spectral types.
- Together: Euclid + ATMO deliver new insights into the formation pathways, evolutionary tracks, and atmospheric physics of brown dwarfs.

Take-Home Message

- Euclid provides spectra of large UCD samples, enabling statistical studies of metallicity.
- ATMO models predict effective temperatures of T dwarfs with high precision, including equilibrium and non-equilibrium chemistry.
- The solar metallicity is the most common result as expected and its evenly distributed across all spectral types.
- Together: Euclid + ATMO deliver new insights into the formation pathways, evolutionary tracks, and atmospheric physics of brown dwarfs.

Thank You

