Dynamical Masses

Fundamental Tests of Substellar Physics

Trent Dupuy

University of Edinburgh

Institute for Astronomy

Outline

Important when you care about the object's past (e.g., habitability) or future.

Trent Dupuy (U. of Edinburgh)

GRAVITY Collaboration, Nowak et al. 2020

Outline

Wish List

- > resolvable photometry
- > resolvable spectra
- > measurable radius
- > known age
- > known composition

Wish List

- > resolvable photometry
- > resolvable spectra
- → measurable radius
- > known coeval age
- > known co-composition

Visual binaries

Brown dwarf binaries are great!

Wish List

- > resolvable photometry
- > resolvable spectra
- → measurable radius
- > known age
- > known composition

Wish List

- resolvable photometry
- > resolvable spectra
- > measurable radius
- > known age
- > known composition

Transiting/Eclipsing

Wish List

- resolvable photometry
- > resolvable spectra
- → measurable radius
- > known coeval age
- > known co-composition

RV binaries

- > resolvable photometry
- > resolvable spectra
- known* (coeval) age
- > known (co-)composition

Visual binaries

Visual binaries

'absolute' orbit

'relative' orbit

$$M_{\text{tot}} = (a_1 + a_2)^3 / P^2$$

$$M_1 = M_{\text{tot}} (a_2/a)$$

$$M_2 = M_{\text{tot}} (a_1 / a)$$

$$M_{\rm tot} = a^3/P^2$$

wide-field imaging

$$\frac{M_2}{M_1 + M_2} = \frac{a_{\text{phot}}}{a_1 + a_2} + \frac{f_2}{f_1 + f_2}$$
 from adaptive optics from seeing-limited

Visual binaries

O.5 O.0 O.5 ΔR.A. (arcsec)

ASSUMES r AND r MEASURED SIMULTANEOUSLY

For normal stars, these should all agree...

$\Delta\mu$ \rightarrow acceleration

ASSUMES r AND r MEASURED SIMULTANEOUSLY

Brandt et al. (2019)

Challenges in measuring dynamical masses.

Visual binaries

Need a in <u>au</u> not <u>arcsec</u> \rightarrow precise parallax required. [1% parallax \rightarrow 3% mass]

Need >30% orbit coverage, but $P \sim [(3 \text{ au})^3/(0.07 \text{ M}_{\odot})]^{1/2} \sim 20 \text{ yr}$

Trent Dupuy (U. of Edinburgh)

Visual binaries

Outline

First dynamical masses of ultracool (brown?) dwarfs.

LHS 1070BC

Leinert et al. (2001)

First dynamical masses of ultracool (brown?) dwarfs.

Gliese 569 Bab

First dynamical masses of ultracool (brown?) dwarfs.

Gliese 569 Bab

Trent Dupuy (U. of Edinburgh)

First dynamical masses of ultracool (brown?) dwarfs.

2MASSW J0746425+2000321AB

First dynamical masses of ultracool (brown?) dwarfs.

2MASS J15344984-2952274AB

eps Ind Bab (T1+T6)

 $M_{\text{tot}} = 121 M_{\text{Jup}}$

Trent Dupuy (U. of Edinburgh)

Liu et al. (2008)

Quantitative empirical tests.

2MASS J15344984-2952274AB

Quantitative empirical tests.

Liu et al. (2008)

Aside: yes, we can reliably estimate L_{bol}

Quantitative empirical test: mass, L_{bol} , and age.

Dupuy et al. (2015, 2016); Dupuy & Liu (2017)

Reasons for measuring dynamical masses.

Where is the end of the main sequence?

Could the substellar boundary be <u>higher</u>?

What about clouds?

cloud free (Baraffe et al. 2003)

Binary test: components must be coeval!

Trent Dupuy (U. of Edinburgh)

Binary test: components must be coeval!

For masses also see: Cardoso (2012)

Reasons for measuring dynamical masses.

Models from Spiegel & Burrows (2012) dotted lines are 3x solar metallicity

Given L_{bol} , age, initial entropy \rightarrow model mass

DupuyeBrandt&(Brandtih2021))

Outline

What's next for dynamical masses?

How massive is it?

- late-T & Y dwarfs
- improved substellar boundary

Are evolutionary models accurate?

- high-precision
 L_{bol} (JWST)
- open cluster / YMG binaries
- asteroseismic ages (old BDs)

Are atmospheric models accurate?

- resolved HST /
 JWST spectra
 for binaries
- benchmark retrievals: logg, ∆[M/H]=0

Konopacky et al. (2012)

Normalized Flux+Const 62 km a* LP349-25B 83 km s1 HD130948C 85 km s 2.310 2.315 2.320 2.295 2.300 2.305 Wavelength (µm)

Trent Dupuy (U. of Edinburgh)

e.g.,
Pollack+96
Hubickyj+05
Marley+07
Fortney+08
Mordasini+13,17
Marleau+14,19

Mass-Magnitude-Metallicity Relation

Gaia Is Transforming "2nd Eon" Model Tests, Too.

