Spectral Classification of Brown Dwarfs Across the Full Metallicity Range

Zenghua Zhang Nanjing University zz@nju.edu.cn

La Gomera, 1 Sep 2025

Outline

- Spectral classes of brown dwarfs
- Lessions from M subdwarf classification
- L (sub)dwarf classification and physical properties
- T (sub)dwarf observation and classification

Spectral classes of brown dwarfs

```
M: CaH, TiO.
(Bessell 1991; Kirkpatrick et al. 1991)
L: Alkali lines, Oxide, Hydride (FeH).
(Kirkpatrick et al. 1999; Martin et al. 1999)
T: Methane (CH4), Water, broad potassium (KI).
(Burgasser+2002,2003)
Y: Ammonia (NH3).
(Cushing et al. 2011; Kirkpatrick et al. 2012)
```

Oh, Be A Fine Girl/Guy Kiss My Lips Tonight, Yahoo!

BD (1/5)

Star (4/5)

M subdwarf classification

Gizis 1997; Lepine et al. 2007, 2013 Dhital et al. 2012 Zhang, S. et al. 1019

Metalicity subclasses:

- 1. Dwarf (dM)
- 2. Subdwarf (sdM)
- 3. Extreme subdwarf (esdM)
- 4. Ultra subdwarf (usdM)

M1.0VI, m-----, g++++
Jao et al. 2008

CaH and TiO in M dwarfs affected by [Fe/H] and $T_{\rm eff}$

Challenges from M subdwarfs: Misaligned Mass

Missunderstanding for radius and activeity

Challenges from M subdwarfs: Inconsistent Metallicity

The zeta index $(\zeta_{Tio/CaH})$ is valid until esdM5.5/usdM6

L (sub)dwarf observation and classification

- L dwarf spectrum (GD 165 B; Kirkpatrick et al. 1993)
- L type brown dwarf (Kelu-1 AB, Ruiz et al. 1997)
- L dwarf classification scheme (Kirkpatrick et al. 1999; Martin et al. 1999)
- L subdwarf (2MASS J05325346+8246465, Burgasser et al. 2003)
- L subdwarf classification (Burgasser et al. 2007; Kirkpatrick et al. 2010; Zhang et al. 2017a)

Spectral classification

 Prefix + Core + Suffix for Metallicity + Temperature and clouds + Gravity. (Kirkpatrick 2005)

- Burgasser et la. 2007
- Kirkpatrick et al. 2010

Kirkpatrick 2005

Optical-NIR colours of L subdwarfs

Spectral classification of L subdwarfs

Zhang et al. 2017a

^a Subclass	[Fe/H]	Kinematics	Subclass	[Fe/H]	
dM0-3 sdM0-3 esdM0-3 usdM0-3	>-0.24 (-0.9, -0.24] (-1.5, -0.9] \leq -1.5	Thin disc Thick disc Halo Halo	dL sdL esdL usdL	>-0.3 (-1.0, -0.3] (-1.7, -1.0] ≤ -1.7	
Subclass	Spectral characteristics		Examples		
sdL	H and K bands are more suppressed than in L dwarfs (normalizing in optical) CaH and TiO at around 0.7 μm are slightly deeper than in L dwarfs VO band at 0.8 μm in early-type sdL is weaker than in L dwarfs 0.77–0.81 μm spectral profile of early-type esdL dips below a straight line FeH at 0.99 μm in mid–late-type sdL is stronger than in L dwarfs CO band at 2.3 μm is weaker than in dL TiO at 0.85 μm stronger than for same spectral type L dwarfs		2M1756 (Ki 2M1756 (Ki SD1333 (Fi SD1416 (Fi 2M1756, SI	SD1416, UL0216 (Fig. 9) 2M1756 (Kirkpatrick et al. 2010) 2M1756 (Kirkpatrick et al. 2010) SD1333 (Fig. 3) SD1416 (Fig. 9) 2M1756, SD1416 (Fig. 9) SD1347 (Fig. 3)	
esdL	J, H, and K bands are strongly suppressed compared to L dwarfs (normalizing in optical). CaH and TiO at around 0.7 μm are deeper than in L dwarfs VO band at 0.8 μm in early-type esdL disappears 0.77–0.81 μm spectral profile of early-type esdL well approximated by a straight slope FeH at 0.99 μm in mid–late-type esdL is much stronger than in L dwarfs CO band at 2.3 μm disappears, K band is almost flat TiO at 0.85 μm weaker than same spectral type sdL		UL1244 (Fi WI0014, UI ut slope UL1244 (Fi 2M0616, 2M 2M0616, 2M	2M0616, UL1519 (Fig. 9) UL1244 (Fig. 4) WI0014, UL1244 (Fig. 4) UL1244 (Fig. 4) 2M0616, 2M0532 (Fig. 9) 2M0616, 2M0532 (Fig. 9) UL1244, 2M0616 (Fig. 8)	
usdL	J, H, and K bands are significantly suppressed compared to L dwarfs (normalizing in optical). CaH and TiO at around 0.7 μm are deeper than in dL VO band at 0.8 μm in early-type usdL disappears 0.77–0.81 μm spectral profile of early-type usdL appears well above a straight line FeH at 0.99 μm in mid–late-type usdL is much stronger than in L dwarfs CO band at 2.3 μm disappears, K band is somewhat flat TiO at 0.85 μm weaker than same spectral type esdL		SSS 1013 (F SSS 1013 (F SSS 1013 (F 2M1626 (Fi 2M1626 (Fi	2M1626 (Fig. 9) SSS1013 (Fig. 10) SSS1013 (Fig. 10) SSS1013 (Fig. 10) 2M1626 (Fig. 9) 2M1626 (Fig. 9) 2M1626 (Fig. 8)	

L7
sdL7
esdL7

L6 sdL7 esdL6

L4
sdL4
esdL4
usdL4

Are they BDs?

10 Gyr Teff isochrones at different metallicity

Luminosity contributed by nuclear fusion

Burrows et al. 1993

Challenges from M subdwarfs: Misaligned Mass

T (sub)dwarf observation and classification

- T dwarf spectrum (GL 229 Bab; Oppenheimer et al. 1995)
- T dwarf classification scheme (Burgasser et al. 2002, 2003)
- T subdwarf (2MASS J09373487+2931409, Burgasser et al. 2002)
- T subdwarf classification (Zhang et al. 2019b; Burgasser et al. 2025)

Colours of T subdwarfs

T subdwarf classification

The zeta index (ζ_T) for T subdwarfs

$$\zeta_{T,1} \equiv \frac{[\text{H2O} - \text{H}]_{\odot}([\text{CH4} - \text{H}])}{[\text{H2O} - \text{H}]}$$

$$\zeta_{T,2} \equiv \frac{[\text{H2O} - \text{H}]_{\odot}([\text{H2O} - \text{J}])}{[\text{H2O} - \text{H}]}$$

$$\zeta_{T,3} \equiv \frac{[\text{K/H}]}{[\text{K/H}]_{\odot}([\text{H2O} - \text{J}])}$$

$$\zeta_{T,4} \equiv \frac{[\text{K/H}]}{[\text{K/H}]_{\odot}([\text{H} - \text{dip}])}.$$

Burgasser et al. 2025

Summary

M subdwarfs

- All are stars, but spectral subtype ≠ mass → misinterpreted activity & radii
- Metallicity classification breaks down beyond esdM5.5/usdM6

L subdwarfs

- Three classes: usdL (∞,-1.7], esdL (-1.7, -1.0], sdL (-1.0, -0.3]
- Mix of lowest-mass stars (early L) and transitional brown dwarfs (mid-late L)

T subdwarfs

- T0-T4: transitional brown dwarfs
- T5+: degenerate brown dwarfs (majority)
- Hydride-dominated atmospheres
- Classification scheme still evolving

Rare quadruple star system could unlock mystery of brown dwarfs

An artist's impression of the UPM J1040-3551 system against the backdrop of the Milky Way as observed by Gaia. On the left, UPM J1040-3551 Aa & Ab appears as a distant bright orange dot, with an inset revealing these two M-type stars in orbit. On the right, in the foreground, a pair of cold brown dwarfs - UPM J1040-3551 Ba & Bb – orbit each other for a period of decades while collectively circling UPM J1040–3551 Aab in a vast orbit that takes over 100,000 years to complete.

Credit: Jiaxin Zhong/Zenghua Zhang **Licence type:** Attribution (CC BY 4.0)

Scientists Find a Quadruple Star System in Our Cosmic Backyard

Two of the objects in the arrangement are cold brown dwarfs, which will serve as a benchmark for others throughout the Milky Way.

An artist's impression of a star system, UPM J1040-3551, against the backdrop of the Milky Way as observed by Gaia. The two brighter stars appear as a distant orange dot, left, and the cold brown dwarfs are in the foreground. Jiaxin Zhong/Zenghua Zhang