

Discovery of CH₄ and metallicity constraint in an ultracool extremely metal-poor atmosphere

Jun-Yan Jerry ZHANG
PhD ABD

Representing: Nobleu, E.L. Martín, P. Tremblin, M.R. Zapatero Osorio, V.J.S Béjar, N. Vitas, B. Gauza, Ya. Pavlenko, R. Rebolo

Universidad La Laguna

Metal-poor brown dwarf

- BD preserves original element ingredients
- Halo/thick disk population (Pop.II) are as old as our Galaxy.

- We want to know the Galaxy evolution, cosmic dawn chemistry
- We want to know the metal-poor substellar evolution model & metalpoor ultracool atmospheric model
- They are metal-poor, namely subdwarf: sd
 - Extreme: esd
 - Ultra: usd

Metal-poor brown dwarfs are few...

- BDs are small and cold
 → faint (spec. type M, L, T, Y)
- Metal-poor BDs are old, no H-fusion
 → even colder & fainter (T, Y)
- Halo/thick disk members are rare searching radius limited to 100pc
- Halo/thick disk members move fast (> 1"/yr)

- Till today
 - ~20 metal-poor sdT candidates
 - 1 metal-poor sdY
 - Mainly discovered by WISE

Our target

- WISEA J181006.18-101000.5
- Identified as high-proper-motion candidates in NeoWISE survey
- Discovered in the Backyard Worlds

Peculiar colors

Our closest metal-poor neighbor

• 8.9 pc from a robust parallax measurement

Previous spectroscopy

- No methane
- Strong CIA H₂
- Inferred T = 1300 K 800 K
- No good template fit
- Nor model fit

Name	Parameter	Value	
Parallax	ω	$112.5^{+8.1}_{-8.0}$ mas	
Distance	d	$8.9^{+0.7}_{-0.6}$ pc	
Proper motion in RA	$\mu_{lpha} { m cos} \delta$	$\cos \delta = -1027.0 \pm 3.5 \mathrm{mas}\mathrm{yr}^{-1}$	
Proper motion in dec	μ_δ	$-246.4 \pm 3.6 \mathrm{mas}\mathrm{yr}^{-1}$	
Heliocentric velocity	$v_{ m h}$	$45.6 \pm 3.5 \mathrm{km}\mathrm{s}^{-1}$	
Tangential velocity	v_{t}	$44.5 \pm 3.6 \mathrm{km}\mathrm{s}^{-1}$	
Galactic velocity	U	$-36.9 \pm 2.9 \mathrm{km}\mathrm{s}^{-1}$	
Galactic velocity	V	$-44.5 \pm 1.8 \mathrm{km}\mathrm{s}^{-1}$	
Galactic velocity	W	$-29.1 \pm 2.7 \mathrm{km}\mathrm{s}^{-1}$	
Luminosity	$\log (L/L_{\odot})$	$-5.78 \pm 0.11 \text{dex}$	
Bolometric magnitude	$M_{ m bol}$	$19.850^{+0.082}_{-0.074}$ mag	
Effective temperature	$T_{ m eff}$	$800 \pm 100 \text{K}$	
Gravity	$\log g$	$5.0 \pm 0.25 \mathrm{dex} \;(\mathrm{cm}\mathrm{s}^{-2})$	
Metallicity	[Fe/H]	$-1.5 \pm 0.5 \text{dex}$	
Radius	R	$0.067^{+0.032}_{-0.020}R_{\odot}$	
Mass	M	$17^{+56}_{-12} M_{\text{jup}}$	

Classified as esdT0-3, but T dwarf ...

- 500 K < T < 1300 K
- Known as methane dwarf
- Characteristic molecule: CH₄

What is the problem?

- Wrong classification as esdT?
- New spectral classification scheme?
- Physical parameter wrongly measured?
- Binary?
- Strongly modified atmosphere chemistry in metal-poor environment?

- Instrument: EMIR (Infrared multi-object spectrograph of GTC)
- JHK mid resolution grism R ~ 5000
- Visitor mode 5 days
- Sahara Haze
- Superb seeing

Table 2. Summary of GTC/EMIR observations.

Target	MJD	Exp.	Seeing	Fil/Grism
WISE1810	60512.90	$7 \times 10 s$	0.46	J
WISE1810	60512.91	$7 \times 10 s$	06	K_s
WISE1810	60512.91	$7 \times 10 s$	0.46	H
WISE1810	60513.03	$24 \times 360 s$	06	$\mathrm{spec}\ J$
WISE1810	60514.00	$36 \times 360 s$	05	$\mathrm{spec}\ H$
WISE1810	60515.00	$36 \times 360 s$	05	$\mathrm{spec}\ K$
WISE1810	60516.00	$36 \times 360 s$	05	$\mathrm{spec}\ K$
WISE1810	60517.00	$12 \times 360 s$	05	$\mathrm{spec}\ J$

20"

18^h10^m06^s

05^s

RA

04^s

20"

18^h10^m06^s

05^s

RA

04^s

20"

18^h10^m06^s

05^s

RA

04^s

NIR high-Q medium-R Spectroscopy

NIR Spectroscopy comparison

We undoubtedly detected CH₄!! But no CO ...

Still no potassium

Model fit

- **ATMO 2020** + + (Leggett et al. 2021; Meisner wet al. 2023)
- व्यांभाश्रम्भाजः
 - 1200Krfertemp.
 - •• 00.55 d_{HX} four d_{HX}
 - •• 00.55dpexfpor[[W//H]]
- Axhjust TFP profile, and adabatic coefficient...
- •• Llowering [NV/H] to match the CHI Afteature

Result:

- T 10000±±1000KK
- * | **B g** 5 **5 5 5 ± ± 0 5 5 d e x x**
- [M/H] -1.5.5 9.8.2ex

Model fit

Methane and metallicity?

- CH_4 17 ± 6 ppm
- [M/H] -1.5 ± 0.2 dex
- [C/Fe] 0.2 dex for thick disk stars (Nissen et al. 2014)
- [Fe/H] $-1.7 \pm 0.2 \, \text{dex}$

Why thick disk? RV measurement.

- Triple-band CCF
- Heliocentric RV 83 ± 13 km/s
- UVW wrt LSR $(-62 \pm 13, -43 \pm 5, -33 \pm 2)$ km/s

More esdTs?

- We found an indicator of metallicity for objects as cool as T and Y dwarfs.
- Some of them are supposed to be more metal-poor than WISE1810

IR Spectroscopy

IR spectra for these esdTs or usdTs

- JWST NIRSpec & MIRI program (Burgasser et al. 2025) is finished but ground-base observation can provide more information at red optical/NIR
- Still difficult observationally...

More robust metallicity estimation?

WISE2217

• WISE1810 twin?

WISE2217

 Ground-based parallax CAHA
 48 ± 13 mas

Zhang et al. 2025a A&A

WISE2217 SED

- Colder (< 1000 K)
- More metal-poor (< -2.0 dex)

 $20.63 \pm 0.27 \text{ mag}$

WISE2217 future observation

Could we apply the same metallicity measurement on WISE2217?

- GTC/EMIR scheduled observation
 - Oct 7th 11th 2025 visitor mode
 - 40 hours guaranteed time
 - YJ + HK low-resolution