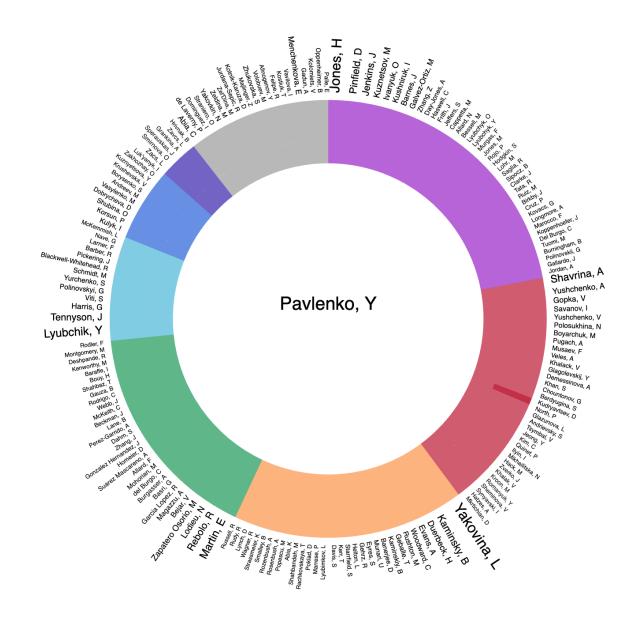


Yakiv Pavlenko - a life dedicated to spectroscopy


Yakiv Pavlenko - a life dedicated to spectroscopy

- Chief Research Fellow of the Main Astronomical Observatory of Ukraine
- Severo Ochoa Research Fellow at Instituto de Astrofísica de Canarias
- Visiting Research Fellow, University of Hertfordshire, United Kingdom
- State prize of Ukraine in Science & Technology and many other prizes

Various international grants – including Severo Ochoa, Jesus Serra, and Leverhulme fellowships, Rocky Planets Around Cool Stars (Marie Curie Initial Training Network), POSTAGBinGALAXIES—Evolved stars: clues to the chemical evolution of galaxies (Marie Curie Actions—International Research Staff Exchange Scheme), Bridges, MCS4Ukraine, Royal Society

ADS author network

.. co-author, colleague, friend to many

Broad legacy

- Rigorous modelling of complex stellar phenomena
- Unusual for theorist to have such keen interest in real data
- Key skill was ability not to make modelling too complex
- Interdisciplinary collaboration
- Family man .. also very busy nurturing colleagues and students
- A deep commitment to advancing Ukrainian astronomy

2005 Students, colleagues, and visitors always at the centre of things

Broad friendship (supervision of me) based on riches of atomic and molecular process .. and place, food

- IAC group was Yakiv's longest collaboration, Yakiv's papers with Antonio Magazzu (Catania, Italy), Rafael Relobo, Eduardo Martin (since 1992) helped me to find him
- Many others I know found similar bond with him particularly including Tom Geballe (Gemini Telescope), Nye Evans (University of Keele), Jonathan Tennyson (University College London), Adam Burgasser (UC San Diego), James Jenkins (University of Diego Portales) .. so a big honour to be asked to speak
- My good fortune to have girlfriend working in Ukraine so looking for place to work on PhD whilst 'on holiday' .. and found Yakiv

Found Observatory and Yakiv via visit to Planetarium

Inside the Stars, IAU Colloquium 137 ASP Conference Series, Vol. 40, 1993 Werner W. Weiss and Annie Baglin (eds.)

OBSERVATIONAL PATTERNS OF LITHIUM DEPLETION IN PRE-MAIN SEQUENCE STARS*

EDUARDO L. MARTIN, RAFAEL REBOLO and RAMON J. GARCIA LOPEZ

Instituto de Astrofísica de Canarias, E-38200, La Laguna, Spain

ANTONIO MAGAZZU Osservatorio Astrofisico di Catania, I-95125 Catania, Italy

YAKOV V. PAVLENKO
The Principal Observatory of Ukraine, Kiev, Ukraine

<u>ABSTRACT</u> We present results based on the analysis of lithium abundances in a sample of ~ 50 pre-main sequence stars covering a wide range of masses (from 2 to $0.3~{\rm M}_{\odot}$) and luminosities (corresponding to ages of 1-100 Myr). Stars with masses estimated to be $\gtrsim 1~{\rm M}_{\odot}$ show lithium abundances close to cosmic with little scatter ($\pm~0.3~{\rm dex}$). Stars with masses less than Solar present a wide range of lithium abundances, with a clear trend to lower abundances for lower luminosities (greater age). The observed Li abundances constrain theoretical predictions of lithium depletion in rotating pre-main sequence stars.

Lots of early interesting work

Yakiv continued to write for hard to access Ukrainian journals throughout his career

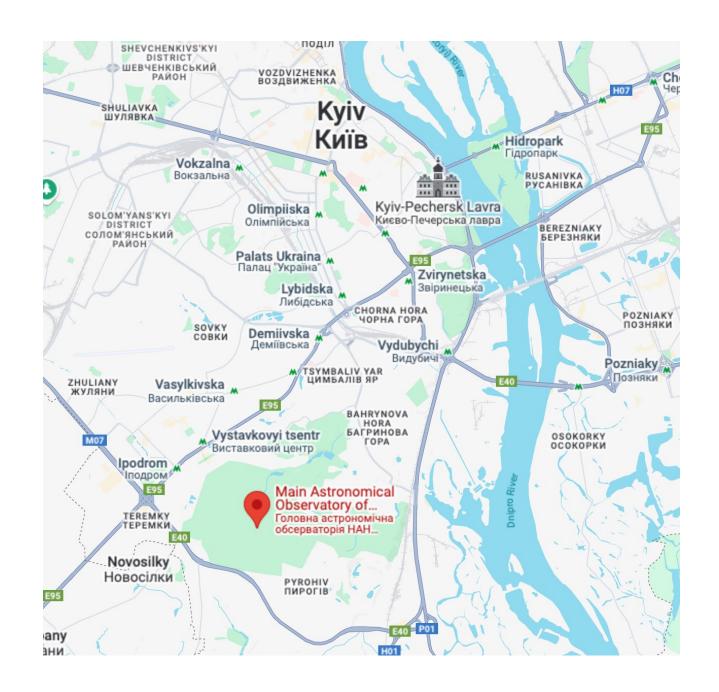
The analysis of promethium abundance in the atmospheres of magnetic-peculiarity stars HD 25354

Heading: Physics of Stars and Interstellar Medium

¹Yushchenko, VA, ¹Gopka, VF, ²Yushchenko, AV, ³Pavlenko, YV, ³Shavrina, AV, ⁴Musaev, F, ⁵Demessinova, A ¹Scientific Research Institute "Astronomical Observatory" of I.I.Mechnikov Odessa National University, Odesa, Ukraine

²Astrocamp Contents Research Institute, Goyang, Republic of Korea

³Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine


⁴Shamakhy Astrophysical Observatory named after N. Tusi of the Azerbaijan National Academy of Sciences, Settlement Y. Mammadaliyev, Shamakhy district, Republic of Azerbaijan, AZ5628

⁵Faculty of Physics and Technology of the Kazakh National University named after Al Farabi, Alma-Ata, 050040, Kazakhstan

Kinemat. fiz. nebesnyh tel (Online) 2025, 41(1):45-58 https://doi.org/10.15407/kfnt2025.01.045

32 🗌	1988Afz28163P	1988	cited: 1	
	Part One - Menzel Coeffic		/IGI in Atmos	ohere of M Giants with Chromosphere
	Pavlenko, Y. V.			
33 🗆	1987stat.conf41P	1987		
	the chromosphere and the Pavlenko, Ya. V.			nosphere of an M-giant depending on ong Mg I lines.
0.4	1987stat.conf23P	1987		
34 📙		accurac	y of determin	ing the chemical abundance of the
35 🗆	1987pras.conf22P	1987		
	Theoretical profiles of stro chromosphere. Pavlenko, Ya. V.	ong Mg I	lines in the sp	pectrum of a red giant with
36 🗆	1987pras.conf15P	1987		
	Ionization state of metals Pavlenko, Ya. V.	in the atr	mosphere of a	an M giant with chromosphere.
37 🗆	1984elam.bookP	1984	cited: 6	
	Effects of LTE-deviation in Pavlenko, Ya. V.	atmospl	heres of M gi	ants.
38 🗆	1984TarOT701P	1984		
	Departures from LTE in the Pavlenko, Ya. V.	e atmosp	heres of M g	iants.
39 🗆	1984PTarO5068P	1984		
	Radiative balance in trans Pavlenko, Ya. V.	itions of	magnesium ii	n the atmosphere of anM2 giant.
40 🗆	1984PTarO5054P	1984		
	The solution of the NLTE p	oroblem 1	for magnesiu	n in the atmosphere of an M2 giant.
	Pavlenko, Ya. V.			

2025 map .. but in the 1990s the Observatory was not included on maps

Mid 1980s

Main Astronomical Observatory of the order of Lenin of the Academy of Sciences of the Ukrainian SSR

New Results

New Papers

Early adopter

Melitopol"

Yevpatoriia

Sea

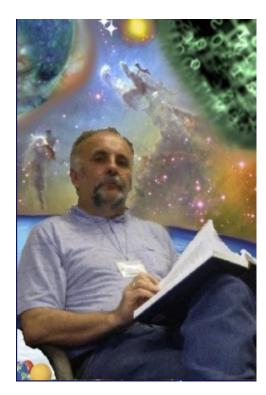
Black

Bookmarks

E-mail

Berdians

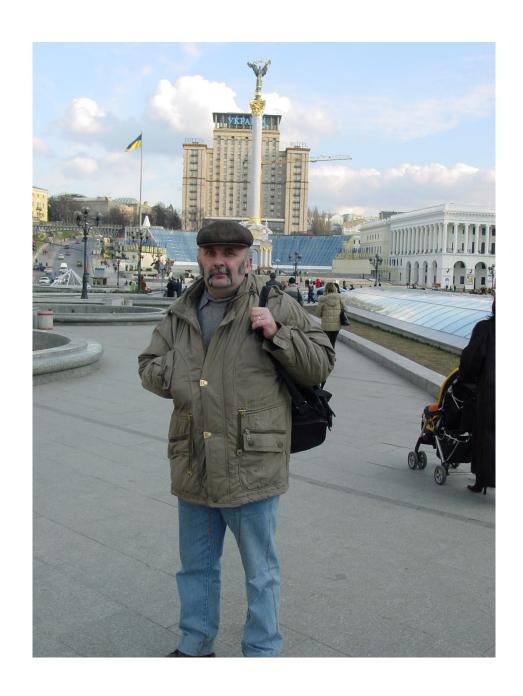
RUSSIA

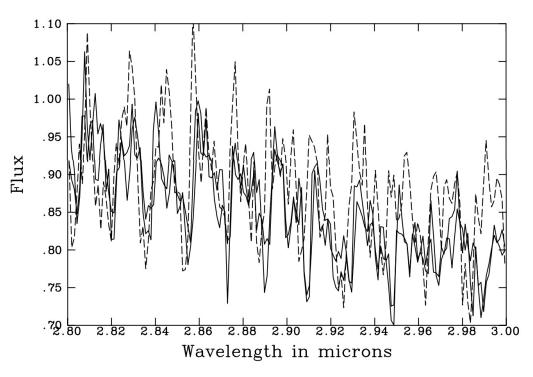

Sea of

Web Pub

FAQ

	Isotop's abundances	recommended by IAUPAC						
	<u>Isotop's abunds.</u>	Lodders et al. (2009). Bibcode: 2009LanB4B712L; DOI: 10.1007/978-3-540-88055-4_34						
	<u>Isotops</u>	Masses & Abundances						
	<u>Isotops</u>	of Titanium and others						
	<u>Exomol</u>	from UCL and EXOMOL Papers						
	Gurvits et al.	Thermodynamic properties of individual substances						
	P.F.Bernath's	Electronic Spectroscopy of Diatomic Molecules						
	NIST Webbok	of Huber and Herzberg et al. molecular data						
	NIST ASD	NIST Atomic Spectral Database. Table of spectral lines and energy levels for all elements.						
	EXOMOL	line lists						
	<u>Uppsala</u>	database of VALD						
	<u>HITRAN</u>	HITRAN2008 molecules						
	Line ID	atomic line identification						
	Molecular bands	of M-stars.						
	J. Chem. Phys.	index						
	J. Molec. Spectr. (JSM).	index						
	<u>Hydrogen lines</u>	before 1 micron						
-	<u>Hydrogen lines</u>	beyond 1 micron						
	Absorption lines	of all elements in the spectrum of the Sun.						
	<u>Carbon izotopic</u>	ratio coefficients: 12C/13C 3,, 100.						
	Model atmospheres and theoretical spectra Go to TOP							
	PHOENIX	Peter Haushildt site						
٠	MARCS	Models and spectra						
	CoolStar	Model Repository						
•	Useful computer stuff. Go to TOP							
	<u>US</u>	sites of IRAF. + <u>UK</u> or <u>US</u> sites of IRAF's documentation.						
	Free Online OCR	Convert JPEG, PNG, GIF, BMP, TIFF, PDF, DjVu to Text						
	fortran 77	f77 as is						
	NAG	home page						


Website colour scheme based on his favourite midnight commander


Hard for me to get to Observatory so often met in central Kyiv

~1999

Maiden Nezalezhnosti

²⁰⁰² Spectral analysis of water vapour in cool stars .. Steve Miller (UCL) pre-EXOMOL

Figure 6. GJ 406 compared with 3000-K synthetic spectra using the MT and PS line lists. The observed spectra and PS model are shown as solid thick and thin lines respectively, and the MT model is shown as a dotted

Carbon abundances and ¹²C/¹³C from globular cluster giants ..

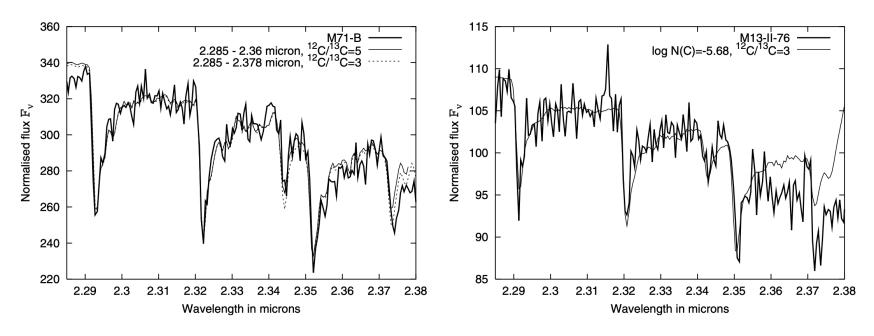
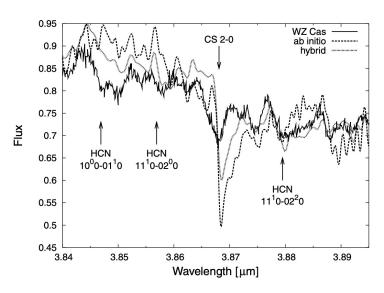



Figure 8. Fits to observed spectra for the full spectral region for M71-B (left) and M13-II-76 (right).

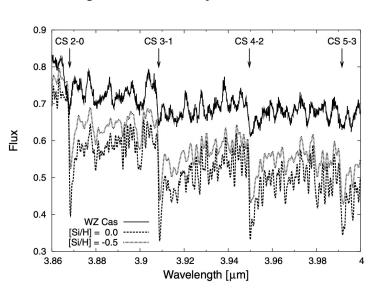

.. Greg Harris (UCL) pre-EXOMOL line list

Figure 8. Synthetic and observed spectra of WZ Cas. The synthetic spectra have been convolved with by a Gaussian with half width at half maximum of $0.003~\mu m$.

Improved linelist for HCN/HNC

405

Figure 9. Synthetic and observed spectra of WZ Cas. The synthetic spectra have been calculated with different Si abundances and are convolved with by a Gaussian with half width at half maximum of $0.003~\mu m$. The synthetic spectra have constants of 0.075~and~0.1 subtracted from the flux.

2004 orange revolution

Bands of CrD and MgD and the 'deuterium test'

1344 Ya. V. Pavlenko et al.

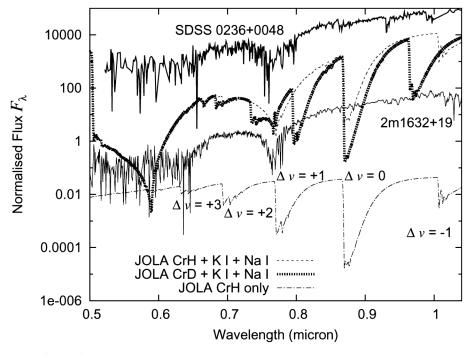


Figure 4. Molecular bands of the $A^6\Sigma^+$ – $X^6\Sigma^+$ system of CrH and CrD and a theoretical spectrum computed for a 1800/5.0/0 COND model atmosphere. Spectra are shown for D/H = 1. The lower line on the plot shows the pure spectrum of CrH computed in the framework of JOLA approximation. For comparison the observed spectra of two L dwarfs 2MASS1632+19 (Martín et al. 1999) and SDSS 0236+0048 (Leggett et al. 2001) are shown as solid lines.

2013.. office lemon tree

Dec 2014

With office colleagues at tea time, it is cold

Peter Bertsyk in foreground

A problem for abundance analysis

Pavlenko et al. A&A 606, A49 (2017)

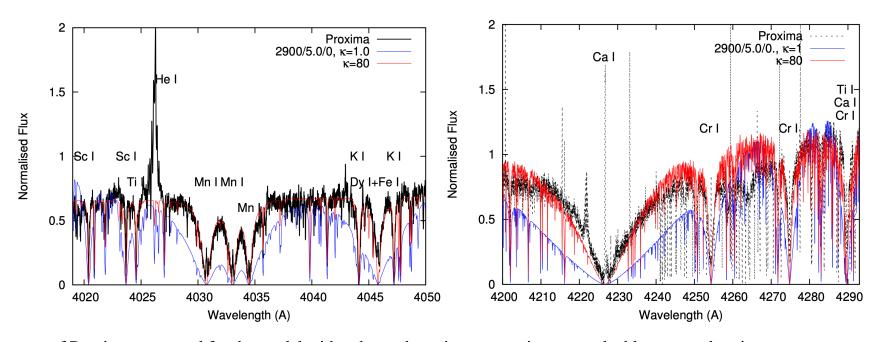
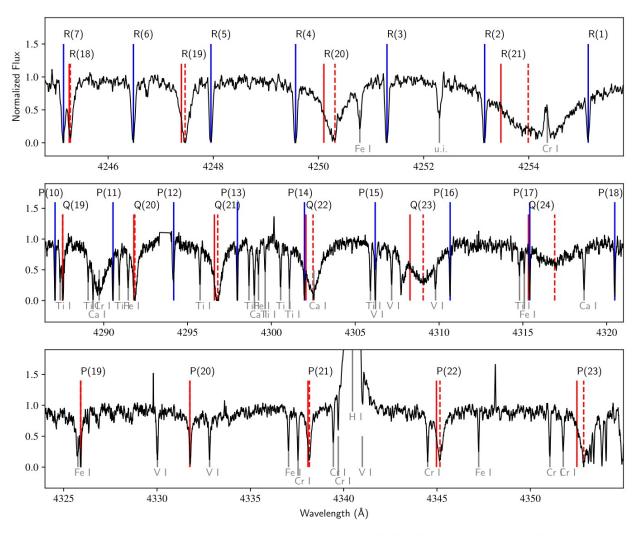


Fig. 6. Spectrum of Proxima computed for the model with enhanced continuum opacity across the blue spectral region.

5662 Y. V. Pavlenko et al.



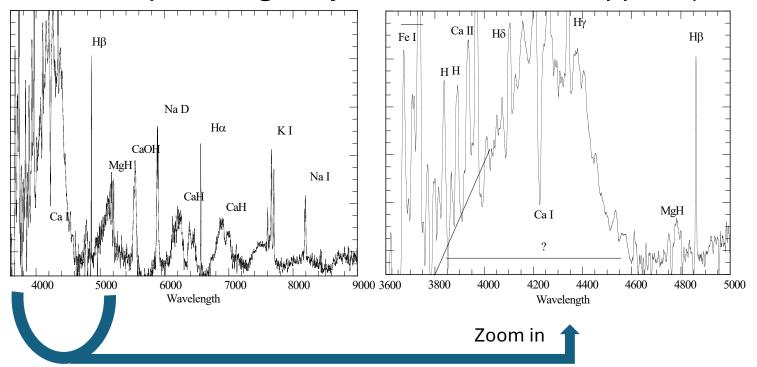


Figure 4. Spectrum of Proxima Cen in the spectral range covering selected intervals of the 27 AlH A $^{1}\Pi$ – X $^{1}\Sigma^{+}$ 0-0 band. The lines of diffuse nature are marked in red. The vertical lines mark calculated positions of lines, while the dashed ones mark the observed positions; the R(21) in the top panel is heavily blended by the CrI resonance line and not marked. Atomic lines are marked in grey.

Divide the spectra - gravity sensitive features appear (at M5)

These plots are the result of dividing the spectrum of a 6 Myr old TWA M5 star by older M star Proxima Centauri. The LHS shows the complete blue and red spectrum, highlight the well known MgH, CaH and CaOH bands and Na I and K I lines that are weaker in the lower gravity dwarf. The outstanding difference is the broad blue feature that is significantly stronger in the old disk dwarf. This is shown at larger scale on the right-hand side.

Beautiful spectra for radial velocity but models are horrible - remarkable line weakening in the blue

The metal lines of the blue depression are more than 300x weaker in the star (black) than the model (red). If the depression is due to veiling from molecular lines, they must be evenly distributed throughout the wavelength region of interest (Bessell 2011).

But alpha Cen A and B are [M/H]=0.24+/-0.02 (e.g., Porto de Mello et al. 2008) no evidence that alpha Cen C (Proxima Cen) is metal poor

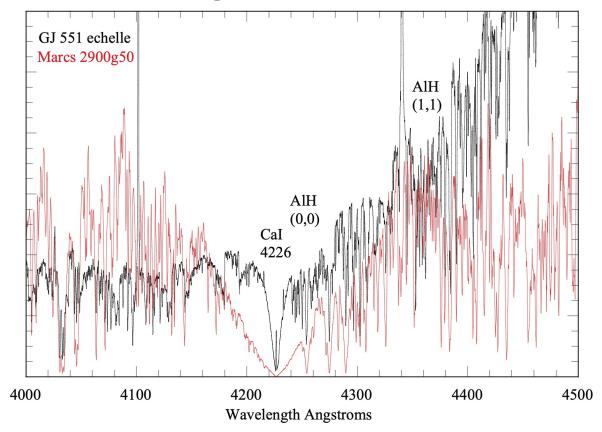


Figure 2. The observed and model blue spectrum of Proxima Cen (M5.5V). Note the huge difference in the strength of CaI 4226 and all the other lines of neutral metals and the difference in the shape of the underlying continua.

Blue depression turns out to be an old issue

Forgotten subdwarf diagnostic, circa 1980

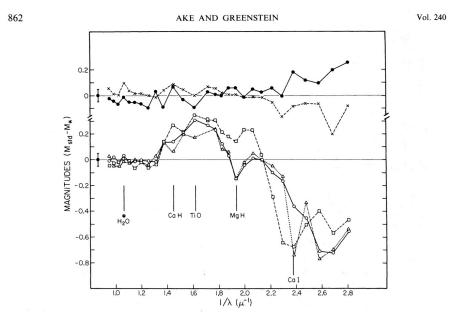


FIG. 4.—MCSP data for stars of various metallicity, plotted differentially with respect to G243-52, a normal old-disk star of type M1.5. Filled circles: G73-35; X: G171-47; open circles: G165-47; open triangles: LHS 3382; open squares: G7-17. The typical MCSP accuracy (±0.05 mag) is

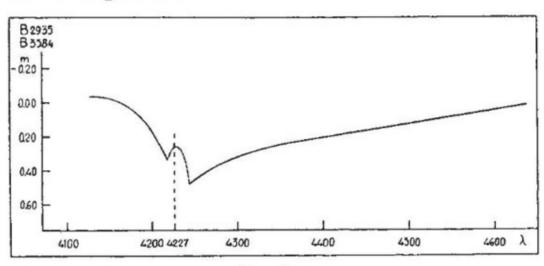
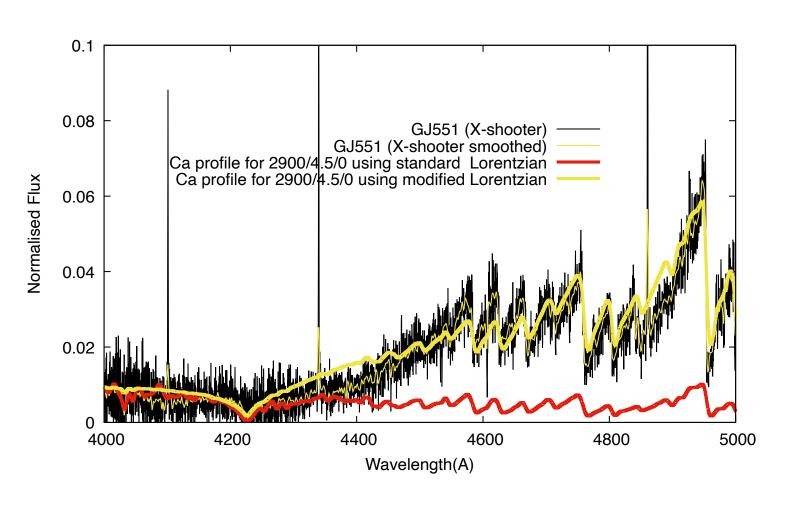
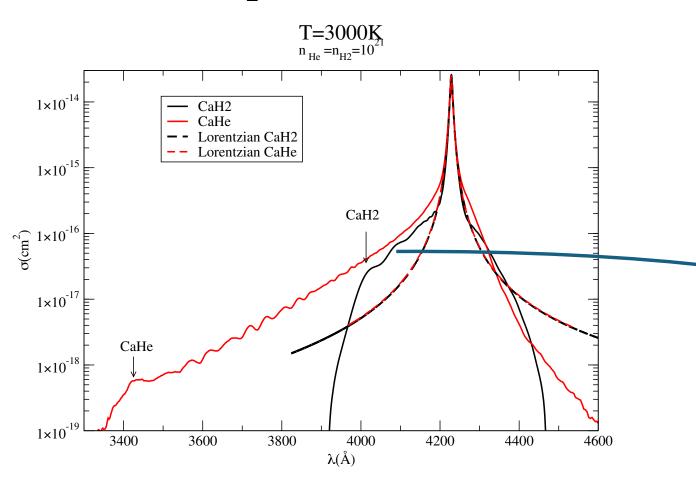


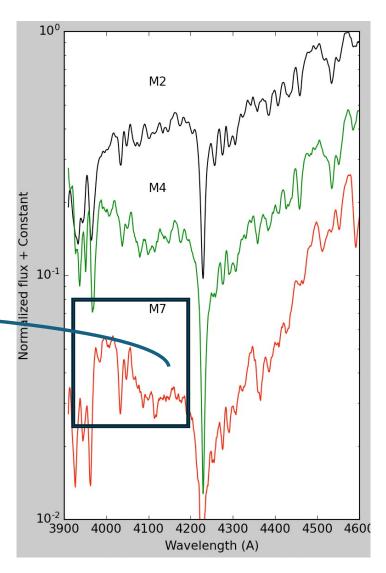
FIG. 1.


A clue to an understanding of the phenomenon is probably the continuous spectrum around the resonance line of Ca, λ 4227, which has been observed by H. Hamada¹ to extend between λ 3980 and λ 5100,

Lindblad 1935

© 1935 Nature F


e.g., variety of suggested solutions including CaH (Varda & Bohm 1965), dust, activity, unidentified molecules (Bessell 2011), NLTE (Pavlenko et al. 2017)


New molecules don't solve blue depression .. most promising is to change line broadening

Blue wing .. a switch from Ca-He to Ca-H₂ towards lower temperatures?

A life dedicated to spectroscopy ...

Dedicated, driven .. never forgot to follow-up or get to emails, no concept of holiday, also never stressed, always another idea to try .. smiling

Life as a scientist in Kyiv is/was hard, frequently not paid, 1.5hr commute to work .. then you arrive with no heating, lighting, ancient computers, but great pleasure from long walks through the woods with students, colleagues, visitors

Close family, but tough love for PhD students

Ever self-deprecating always with many papers on the go with gentle urgency - many unfinished. He already has seven 2025 papers!

Tens of thousands of emails, a few earlier ones ..

Date: Mon, 27 Apr 1998 20:12:26 +0100 (WET DST)

From: Yakiv Pavlenko <pavlenko@ll.iac.es>

To: hraj@staru1.livjm.ac.uk

Dear Hugh,

Until now I tried two regions 6708 and 7699 and found them excellent... Please, note my home phone 277-63-47. always you are wellcame in Kiev.

Regards, YP

Date: Fri, 4 Aug 2000 11:16:27 +0300 (EET DST)

Subject: problems with transparancies...

Dear Hugh,

I see my talk in the frame of your ultra cool meeting.

May I ask you if there wil be a possssibility to make 5 - 6v transparancies? I prepared figures in Kyiv, but I habve not taken my transparancies ...

Now I'm inKeele.

Next MOnday I wiil be in Manchester...

Lookind forward to seeng you soon,

ΥP

>> We have 2 men's day: one in on December (a day of Ukrainian Army)

- >> and Fbruary (a day of sovjet Army)... I do not celebrate any...
- >> I do not like any army... and police...
- > I surprised that you still have a day for the soviet army though
- > maybe this is similar to our rememberance day, to remember those
- > who died in war .. which can be interpreted as a day for the army.

>

Yes, you are right --- the day in February is the Day of my father-he's old army men, spent on the front 6 years (against Germany and then JApan)...

Be sure, the main day for us is a day of 8 March...

Regards,

YΡ

Home phone number .. no mobiles

Transparencies .. no pptx etc

International womens day

Most emails come with a ps.

My computer is overcrowded by computed spectra. I hope we can find not black cat in not dark room...:)

We have a nice winter. A lot of snow, -10 C. It's the real ukrainian winter. Very pity that you cannot see it!

Unfortunately, there is very thin boundary between the real feeling/culture and kitch... Pls look as axample:

Pls, read comments there ... Almost complete darkness of the western view on Ukraine ... but the author of the movie knows the difference between USSR, Ukraine and Russia.

.. always fond of various quotes

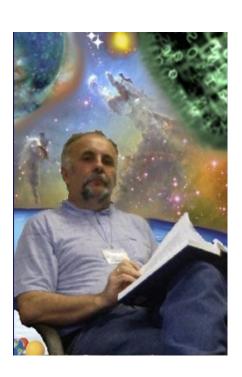
V.Trimble & R.A, Bell: "...Given the web of interconnected uncertainties and errors presented here, one is initially tempted to give up on stellar atmospheres completely and turn to something simple like cosmology."

Yakiv's typical approach starting from scratch considering impact of ..

Opacities - missing continuum/line from atomic, molecular, and broadening isotopes,
chemical abundance disequilibrium,
3-D convection,
sphericity effects,
dust,
stellar winds

Many of Yakiv's contributions still to appear in literature, e.g., in 2025

1 🗆	2025MNRAS.541.3331G	2025/08				
	Infrared spectroscopy	y of V838 Monocerotis in	2015 and 2022			
	Geballe, T. R.; Kaminsk	iy, B. M.; Banerjee, D. P. K.	and 5 more			
2 🗆	2025A&A698A.141Z	2025/06 cited: 1				
	Optical constraints o	n the coldest metal-poor	population			
	Zhang, JY.; Lodieu, N	l.; Martín, E. L. and 10 mor	e			
3 🗆	2025ApJ984L35Z	2025/05 cited: 1				
	Detection of Methane in the Closest Extreme Metal-poor T Dwarf WISEA J181006.18-101000.5					
	Zhang, Jerry JY.; Lod	ieu, Nicolas; Martín, Eduard	lo L. and 7 more			
4 🗆	2025A&A695A26R	2025/03 cited: 3				
	A closer look at LTT	9779b:The ESPRESSO er	ndeavour to pierce the atmospheri	ic vei		
	Ramírez Reyes, R.; Jen	kins, J. S.; Sedaghati, E. al	nd 9 more			
5 🗆	2025KPCB4126Y	2025/02				
	Evaluating Promethium Abundance in the Atmospheres of Magnetically Peculiar Star HD 25 354					
	Yushchenko, V. A.; Gop	ka, V. F.; Yushchenko, A. V.	and 4 more			
6 🗆	2025KFNT41a45Y	2025/01				
	The analysis of promethium abundance in the atmospheres of magnetic-peculiarity stars HD 25354					
	Yushchenko, V. A.; Gop	ka, V. F.; Yushchenko, A. V.	and 4 more			
7 🗆	2025AAS24535325G	2025/01				
	Recent Infrared Spec	troscopy of V838 Monoc	erotis			
	Geballe, Thomas: Bane	rjee, D. P. K.; Evans, A. and	d 5 more			


Yakiv loved celebrations

some will remember his xmas cards

Many diagnostic phenomena available with high resolution spectrographs, e.g., obvious ones

- Isotopic ratios
- Abundance patterns and formation
- Light element abundances
- Atomic broadening diagnostics
- Molecular broadening diagnostics
- NLTE can give detailed insight into 3D atmospheric structure
- Magnetic broadening
- .. but many many more, Yakiv encourages you to explore

