- The AO modes for HARMONI -From Classical to Laser-assisted tomographic AO systems

Benoît Neichel, Thierry Fusco, Carlos M. Correia, Kjetil Dohlen, Leonardo Blanco, Kacem El Hadi, Jean-François Sauvage,
Noah Schwartz, Yoshito Ono, Fraser Clarke, Emmanuel Hugot, Miska Le Louarn, Niranjan A. Thatte, Matthias Tecza, Hermine Schnetler, Ian Bryson, Angus M. Gallie, David M. Henry, Tim J. Morris, Richard M. Myers, Joël Vernet, Jérôme Paufique,
Peter Hammersley, Jean-Luc Gach, Alexis Carlotti, Ariadna Calcines, Pascal Vola, Sandrine Pascal, Marc Llored, Dave Melotte,
Olivier Martin, Arlette Pecontal, Andrew Reeves, James Osbron, Matthew Townson

HARMONI Consortium

Partner	Associate Partner	Responsibilities
University of Oxford	STFC – RAL Space	Spectrographs & Obs. Prep
STFC – UK ATC Edinburgh	Univ. of Durham	Cryostat, AIV, Rotator, LTAO
IAC, Tenerife		Pre-optics & Electronics
CSIC – CAB (INTA), Madrid		Calibration & Sec. guiding
CRAL, Lyon	IPAG, Grenoble IRAP, Toulouse	IFU & Software
LAM, Marseille	ONERA, Paris IPAG, Grenoble	SCAO, LTAO, High Contrast

HARMONI Consortium

Partner	Associate Partner	Responsibilities	
University of Oxford	STFC – RAL Space	Spectrographs & Obs. Prep	
STFC – UK ATC Edinburgh	Univ. of Durham	Cryostat, AIV, Rotator, LTAO	
IAC, Tenerife		Pre-optics & Electronics	
CSIC – CAB (INTA), Madrid		Calibration & Sec. guiding	
CRAL, Lyon	IPAG, Grenoble IRAP, Toulouse	IFU & Software	
LAM, Marseille	ONERA, Paris IPAG, Grenoble	SCAO, LTAO, High Contrast	

Thanks for hosting us this week !!

HARMONI = High Angular Resolution - Monolithic - Optical and Nearinfrared - Integral field spectrograph

First light ELT instrument

HARMONI = High Angular Resolution - Monolithic - Optical and Nearinfrared - Integral field spectrograph

First light ELT instrument

<u>Workhorse instrument</u> - visible and near-infrared spectroscopy (0.5–2.4 μ m) <u>Integral Field Spectrograph</u> – providing ~ 30 000 spectra per exposure

HARMONI = 3 resolving powers

Bands	Wavelengths (µm)	R
"V+R" or "I+z+J" or "H+K"	0.45-0.8, 0.8-1.35, 1.45-2.45	~3000
"l+z" or "J" or "H" or "K"	0.8-1.0, 1.1-1.35, 1.45- 1.85, 1.95-2.45	~7500
"Z" or "J_high" or "H_high" or "K_high"	0.9, I.2, I.65, 2.2 (TBD)	~20000

HARMONI = 4 spatial scales

HARMONI = 4 spatial scales

UNIVERSITY OF

OXFORD

RAL Space

CSIC

ONERA

THE FRENCH AFROSPACE I

ONERA

THE FRENCH AFROSPACE LA

UNIVERSITY OF

OXFORD

RAL Space

CSIC

HARMONI, SCAO & LTAO implementation

HARMONI, SCAO & LTAO implementation

Nasmyth Platform

HARMONI, SCAO & LTAO implementation

Nasmyth Platform

HARMONI, SCAO & LTAO implementation

Nasmyth Platform

HARMONI, SCAO & LTAO implementation

HARMONI, SCAO & LTAO implementation

SCAO system baseline is to use a pyramid WFS:

SCAO system baseline is to use a pyramid WFS

Better performance & better sensitivity

CSIC

SCAO system baseline is to use a pyramid WFS

Better performance & better sensitivity

ONERA

THE FRENCH AEROSPACE L

UK Astronomy Technology Centre

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity \succ
- Managing the "Island" effect

CSIC

THE FRENCH AEROSPACE L

See Noah Schwartz talk on Friday

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity
- Managing the "Island" effect

CSIC

See Noah Schwartz talk on Friday

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity
- Managing the "Island" effect

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity
- Managing the "Island" effect

Small modulation provides information on what's behind the spider

+ Secret ingredient See Noah Schwartz talk on Friday

SCAO system baseline is to use a pyramid WFS

- Better performance & better sensitivity
- Managing the "Island" effect

Small modulation provides information on what's behind the spider

+ Secret ingredient See Noah Schwartz talk on Friday

SCAO will provide a SR of >70% in K-band

High Contrast :

Spectral characterization of young Jupiters around nearby stars in H & K bands at R=3000-20000, with **a 10-6 contrast at 200mas**.

Shaped pupil transmission

From A. Carlotti, A. Vigan, D. Mouillet, M. Bonnefois

High Contrast :

Simulated data of 4 planets w/ 10-6 planets contrast & 51 Eri b-like synthetic spectrum (2h exp. with H=6 star).

HARMONI, SCAO & LTAO implementation

LTAO Top-Level Specifications:

LTAO Top-Level Specifications:

4 mas	10 mas 20 mas	60 x 30 mas
Strehl K > 60%	EE (20mas) > 40%	EE (40mas) > 50%
Jitter < 2mas	Jitter < 5mas	Jitter < 10mas
Sky Coverage >10% at the Pole	Sky Coverage of >50% at the Pole	Sky Coverage of >90% at the Pole

Set requirements on the LGS High-Order Loop

LTAO Top-Level Specifications:

4 mas	10 mas 20 mas	60 x 30 mas
Strehl K > 60%	EE (20mas) > 40%	EE (40mas) > 50%
Jitter < 2mas	Jitter < 5mas	Jitter < 10mas
Sky Coverage >10% at the Pole	Sky Coverage of >50% at the Pole	Sky Coverage of >90% at the Pole

Set requirements on the LGS High-Order Loop

Set requirements on the NGS Low-Order Loop

Laser constellation

Sensing on LGS

Dealing with spot elongation

Dealing with spot truncation

Dealing with spot truncation

Sensing on NGS

Main offender is the telescope Windshake

But windshake is isoplanatic: we can use the telescope WFS to reduce it

Sensing on NGS

Jitter control strategy:

- Use "bright but far" stars to compensate windshake with telescope WFS
- Use "faint but close" star to compensate atmospheric jitter

Sensing on NGS

Jitter control strategy:

- Use "bright but far" stars to compensate windshake with telescope WFS
- Use "faint but close" star to compensate atmospheric jitter

See Carlos Correia poster on Thursday

Sensing on NGS

See Carlos Correia poster on Thursday

Sensing on NGS

The NGS strategy fulfills the science requirements for all observations

_____ Conclusion: HARMONI schedule _____

12/2	017 20	019		2023	
PDF	R F	DR	MAIT		

Conclusion: HARMONI schedule _____

<section-header>

2024: 1st light !

Dr. Frans Snik

- The AO modes for HARMONI -

1 more slide before Coffee Break !

1 1 1 1 1 1 1 1

A D A T T I C A

WaveFront Sensing in the VLT/ELT era II

2-4 October 2017 Padova, Italy Europe/Rome timezone

https://www.ict.inaf.it/indico/event/521/

Overview

Loc & Soc

Registration

E Registration Form

Participant List

Venue

Accomodation

How to reach Padova

Photos

Gender Equity

After the first WorkShop in Marseille we announce the second edition of the WaveFront Sensing in the VLT/ELT era. The Workshop will take place in Padova, Italy, at the local Botanical Garden, from 2 to 4 October 2017.

WaveFront Sensing is at the heart, and a key component, of an Adaptive Optics system and often it dictates the ultimate capabilities of the latter, especially in the astronomical domain. The new challenges dictated by the development of some science field, like the exoplanets detection and characterization, pushed the development of these devices, along with new opportunities coming from new generation of instrumentations for 8m class telescopes and the construction of a next generation of Extremely Large Telescopes.

In this scenarios new technologies, new developments, new concepts, and new ideas, circulated in the framework of WaveFront Sensing.

The parameter's space where such devices are requested to push their limits beyond the current one – and sometimes beyond what is believed to be their ultimate limits- become increasingly large and to some extent complex. Wide field, use of artificial references from large apertures, new level of accuracy in the compensated wavefront –just to mention a few examples- are just among the new kind of challenges where detector's technology, ideas and devices are requested to compete in a race for the ultimate performance in terms of contrast, field of view, sky coverage, to name a few examples.

Register now, for the 2 to 4 October 2017 in Padova, Italy

LABORATORIO NAZIONALE ADONALE OTTICA ADATTIVA

WaveFront Sensing in the VLT/ELT era II

2-4 October 2017 Padova, Italy Europe/Rome timezone

Overview
Loc & Soc
Registration
Registration Form
Participant List
Venue
Accomodation
How to reach Padova
Photos

Gender Equity

https://www.ict.inaf.it/indico/event/521/

Register now, for the 2 to 4 October 2017 in Padova, Italy

SCAO system baseline is to use a pyramid WFS

Better performance & better sensitivity

