

Wide-field Adaptive Optics for MOSAIC The multiple object spectrograph for the (E-)ELT

Tim Morris, Alastair Basden, Andrew Reeves, Richard Myers, Simon Morris, Ariadna Calcines, Marc Dubbeldamm (Durham University, UK)

Eric Gendron, Carine Morel, Gerard Rousset, Jean-Tristan Buey, Myriam Rodrigues, Pascal Jagourel, Fanny Chemla, Mikael Frotin, Francois Hammer (Observatoire de Paris, France)

Jean-Marc Conan, Thierry Fusco (ONERA, France)

Benoit Neichel, Kjetil Dohlen, Kacem El Hadi, (LAM, France)

Ewan Fitzsimons (UKATC, UK)

- and -

The MOSAIC consortium

Also: Vienna, Stockholm, Helsinki, Roma, Arcetri, Madrid, Geneva

A little bit of history...

- MOSAIC
 Combination of two phase A MOS instrument studies (from 2009)
 - EVE A 200+ channel seeing-limited VIS fibre-based MOS
 - EAGLE A 20 channel NGS/LGS MOAO NIR IFU MOS
 - 2 very different instruments but with several overlapping or complementary science cases
 - Only a single MOS planned for E-ELT initial instrument suite
 - Would the combination of EAGLE and EVE in a single instrument enable better and more efficient observations?
 - MOSAIC phase A started in late 2015
 - Runs until the end of this year

From Science Cases to Observing Modes

- Science cases combined to provide 4 observing modes
- High-definition mode (HDM) —____
 - 10-20 objects observed in the NIR with AO correction
 - Coarse sampling IFUs with ~2x2 arcsecond fields of view
- High-multiplex mode (HMM) _____
 - As many objects as possible with ~seeing-limited spatial resolutions at VIS and NIR wavelengths
- Intergalactic medium (IGM)
 - 10-20 visible wavelength 'light buckets' for IGM tomography
- A fibre-fed MOS was selected the only option that could support multiple modes within the budget

	Uich Definition Mede (UD	5.4)	
	High Definition Wode (HDW)		
	IFU field of view	2.0 x 2.0 arcsec	
	Multiplex	10 (no maximum)	ΜΟΑΟ
+	Spaxel sampling	80 mas	
	Ensquared Energy	25% (30%) within 2 spaxels	or
	Wavelength coverage	1000-1800 (800-2500) nm	GLAO
	Field of view	40 (78) arcmin ²	
	High Multiplex Mode (HMM)		
	On-sky aperture	0.84" VIS/0.5" NIR	GLAO
	Multiplex	200 (no maximum)	ULAU
	Wavelength coverage	400-1800nm	or
	Field of view	40 (80) arcmin ²	No AO
	Ensquared Energy	Undefined	
	InterGalactic Medium (IGM)		
*	IFU field of view	3.0 x 3.0 arcsec	
	Multiplex	10 (30)	
	Spaxel sampling	0.3"	No AO
	Wavelength coverage	400-800 (370-1000) nm	
	Field of view	40 (78) arcmin ²	
	Ensquared Energy	Undefined	

The AO challenges

- Is there a system architecture that can support 4 instrument and 2 AO operating modes in a single focal plane?
- Can we provide sufficient levels of correction across such a wide field of view?
 - H-band 27.5% ensquared energy within 160mas for MOAO mode
- How can it be implemented at the E-ELT?

MOSAIC design

MOSAIC tiled focal plane – Fibre positioning

NIR/VIS fibre IFU positioner Focal plane tile (~200 in total)

- Tile diameter of 1 arcmin
- Tile can deploy either fibre or mirror to centre of adjacent tile

Tiles arranged to provide 100% field coverage for both NIR and **VIS fibres**

Baseline AO simulations

- Initial baseline from the EAGLE MOAO study
 - EAGLE MOAO system provided 30%EE H-band EE within 75 mas
- How far can we reduce performance/cost and still meet HDM EE requirements?
 - Minimum of 3 NGS WFS to drive telescope
- How does the ELT AO system perform over its full FoV?

Parameter	EAGLE Value
Number of LGS	6
LGS subapertures	74x74
LGS asterism diameter	7.4′
Number of NGS	5
NGS subapertures	74x74
M4 actuators	75x75
MOAO DM actuators	64 x 64
Frame rate	250Hz
r _o	8.9 - 15cm
Turbulence profile	ESO 35 layer model(s)

Step 1: Cut the number of actuators

Step 2: Get rid of WFSs

MOAO corrected field of view

40 arcmin² requirement (80 goal)

AO4ELT5 Tenerife, 25th June – 30th June 2017

ELT Adaptive Mirror conjugation

MOSAIC

- ELT M4 is conjugated to a mean altitude of 612m
 - Corresponds to a ±1.75% pupil shift across a 7.4' FOV
 - Significant fraction of an actuator spacing
- Impacts both MOAO and GLAO operating modes
 - Required MOAO actuator density increases
 - GLAO correction degrades

ELT M4 Conjugation – GLAO

- ELT M4 conjugation equivalent to an anisoplanatism error
- Corrected GLAO FOV limited to a few arcminutes diameter

ELT M4 conjugation – MOAO actuator count

- Independent Monte-Carlo simulations of H-band 150mas EE with a conjugated M4
 - Overall performance slightly lower than earlier simulations
 - Central 9-10% EE dip is a reconstructor artefact optimising correction at LGS radius
- Conjugation to 612m drops 150mas EE by 4-5%
 - Requires increase in number of MOAO DM actuators beyond 32x32
 - Between 32x32 and 48x48

MOAO field of view

40 arcmin² requirement

MOAO field of view

40 arcmin² requirement

Final system parameters

- >7.2' diameter corrected field of view
- 4 LGS and (up to) 4 NGS
 - Allowed us to observe every real cosmological field we've tried
- 10 MOAO IFU channels
 - H-band EE > 27.5% within 150mas
 - 4000 x 80mas spaxels
- GLAO/Seeing modes:
 - 100 NIR channels
 - 100 VIS channels
- Spectra @ R=5000-18000 from 400-1800nm

Parameter	Baseline value	MOSAIC value
Number of LGS	6	4
LGS subapertures	74 x 74	74 x 74
LGS asterism diameter	7.4′	7.4'
Number of NGS	3-7	4
NGS subapertures	74x74	64 x 64
M4 actuators	75 x 75	75 x 75
MOAO DM actuators	64 x 64	40x40 (TBC)
Frame rate	250Hz	250Hz
r _o	8.9 - 15cm	8.9 – 15cm
Turbulence profile	ESO 35 layer model(s)	ESO 35 layer model(s)

Conclusions

- Is there a system architecture that can support 4 instrument and 2 AO operating modes in a single focal plane?
 - Yes, a mosaic of tiles
- Can we provide sufficient levels of correction across such a wide field of view?
 - Yes, but M4 conjugation will limit GLAO FOV
- How can it be implemented at the E-ELT?
 - 8 WFS, 200 tiles, 4000 fibres, 18000 actuators, 220 IFUs, 9 spectrographs and 2 giant bearings

