Calibration of the low-wind effects: experimental validation of wavefront control on Subaru/SCExAO

Mamadou N'Díaye

F. Martínache, A. Ceau, D. Mary (Observatoire de la Côte d'Azur) N. Jovanovic, J. Lozi, O. Guyon, and SCEXAO team (Subaru Telescope) B. Norris (Sidney Institute for Astronomy)

A04ELT5, Tenerífe, June 29th, 2017

Work supported by ERC grant #683029 (KERNEL, PI: F. Martínache)

Exoplanet imagers for warm or massive gaseous planets

- Extreme adaptive optics
- Coronagraphy
- Image post-processing
 - ▶ 10⁶-10⁷ raw contrast
 - ▶ 0.2" in H-band

→ Current contrast limitations

Observing colder or lighter gaseous planets?

Coronagraphic image on VLT/SPHERE

- instrumental aberrations, jitters, drifts
- non common path aberrations
- Iow-wind effects (LWE)
 - C. Correia's talk yesterday
- Focus on LWE

10⁵-10⁶ contrast limit

Ideal clean star image

Star image (no coronagraph)

N'Diaye et al.A&A 2013, 2016 Sauvage et al.AO4ELT 2015

Low-wind effects (LWE)

Star image (no coronagraph)

Time loss: up to 20% during the best observing conditions

N'Diaye et al.A&A 2013, 2016 Sauvage et al.AO4ELT 2015

First diagnostic with ZELDA

Star image (no coronagraph)

N'Diaye et al.A&A 2013, 2016 Sauvage et al.AO4ELT 2015

Compensation for the low-wind effects

• Issue

- no control of these effects
- Our solution
 - focal plane wavefront control using ZAP wavefront sensor
 - Martinache et al. 2013, 2016
 - N'Diaye et al. 2017 in prep

ZAP: a Fourier sensor for focal plane metrology

Established by the European Commissio

- Fourier analysis of science images
 - Asymmetric pupil mask (ZAP)
 - Interferometric analysis of images
 - Extraction of residual aberrations

ZAP formalism for phase extraction

Pupil phase φ with asymmetric mask

Source image

ZAP formalism for phase extraction

Pupil phase φ with asymmetric mask

Source image

Fourier transform and argument

(u,v) plane phase Φ with subapertures

Linear regime

Phase in Phase in Fourier Plane the pupil $\Phi = A \times \phi$

ZAP formalism for phase extraction

ZAP: control of the first Zernike modes on Subaru/SCExAO

• ZAP

 Conversion of the image into an unambiguous and unbiased wavefront sensor

Test with Zernike modes

- Use of science detector to correct for the non common path errors
- Linearity of the sensor: ±200nm rms in H-band

Set up of a LWE basis mode

Orthogonalization of the LWE mode set

Sensor response to the LWE modes

LWE control using ZAP

LWE control using ZAP

Temporal evolution of the wavefront error

LWE control using ZAP

Temporal evolution of the wavefront error

On-sky results in the visible

open loop

UT 2017-03-12 3.2 m/s wind speed 0.45" seeing

On-sky results in the visible

closed loop

UT 2017-03-12 3.2 m/s wind speed 0.45" seeing

Conclusions & prospects

- First focal plane LWE control loop
 - ▶ In-lab compensation up to ± 100nm rms WFE
 - x2 on-sky gain in resolution in the visible
- Wavefront control algorithm improvements
 - Simultaneous correction of LWE and Zernike modes
 - Introduction of noise covariance matrix
- Forthcoming testbed to push the ultimate limits further
 - First Light C-Red One camera (<1e- rms at high frequency)
 - BMC segmented DM for the generation of segmented phase
 - Feedback for ELTs

Thanks for your attention!

Postdoc available on the KERNEL project Feel free to contact Frantz Martinache: frantz.martinache@oca.eu

