Air Force Research Laboratory

Integrity - Service - Excellence

Terrestrial combination of multiple sodium guidestar laser beams for increased on-sky brightness AO4ELT5, 2017-06-29

> Robert Johnson, Miles Buckman, Jack Drummond, Mark Eickhoff, Robert Fugate, Shawn Hackett, Lee Kann, Odell Reynolds, Jeff Richey, Keith Wyman

Breaking Barriers ... Since 1947

U.S. AIR FORCE

BREAKING BARRIERS

Acknowledgements

Domenico Bonaccini Calia, European Southern Observatory

Toptica Photonics, Germany

- Ronald Holzlöhner, European Southern Observatory
- Simon Rochester, Rochester Scientific

- Background & motivation
- Combining two lasers on the telescope
- Sky data
- Discussion & Conclusions
- Example of recent science with asteroids

Sodium Energy Diagram

- Sodium column abundance and altitude
 - Month of year, hour of day, latitude
- Strength and angle of Earth's magnetic field
 - Elevation, azimuth, latitude, longitude
- Laser parameters
 - Power, polarization, re-pumping (D2b), bandwidth
 - Continuous-wave or pulsed
 - Size of beacon in the mesosphere
- Atmospheric transmission

5 Generations of Sodium Lasers at Starfire Optical Range

- Gen 1 & 2 prototypes for solid state, sum frequency
- Gen 3 used for laser beacon AO for 8 years
- Gen 3+ proof-of-concept for D2b re-pump, 2× increase
- Gen 4 more reliable, shown to be inefficient
- Gen 5 very reliable, good performance 25% of year

Return flux (10⁶ photons/m²/s)

- elevation $\rightarrow 45^{\circ}$ - elevation $\rightarrow 60^{\circ}$ - Requirement

Return flux based on sodium column density of 4.2×10^{13} atoms/m² (minimum for Oct–Dec)

Modeled return flux using LGSBloch (Ronald Holzlöhner and Simon Rochester)

Modeling Return Flux

Modeled return flux with 2 Toptica lasers (Ronald Holzlöhner and Simon Rochester)

Two Toptica Laser Heads Mounted on 3.5-m Telescope

Photos by RQ Fugate

Measure of Laser Frequency Separation and Bandwidth

On-sky Data

Photo by RQ Fugate

Rayleigh Scattering and Beacon

Photos by RQ Fugate

Single Toptica Laser 2016-06-17 Scan to Calibrate Wave-meters

Peak = 1036.8 ± 9.8 $\lambda_0 = 589.158996 \pm 0.000006$ FWHM = 0.001164 ± 0.000025 Peak = 1073.0 ± 4.8 $\lambda_0 = 589.159026 \pm 0.000003$ FWHM = 0.001272 ± 0.000015

Single Toptica Laser 2017-06-14 Wavelength Scan, 19 W, 10% Repump

One Toptica Laser 2017-06-16, 7.1–7.4 UT Power Scan T1

Two Toptica Lasers 2016-06-17 Power Scan at 100 MHz Offset

Two Toptica Lasers, Offset Scans

Two Toptica Lasers 2016-06-17 Offset Scan, 10% Repump, Redshift T1

Two Toptica Lasers 2016-06-17 Offset Scan, 10% Repump, Redshift T2

Two Toptica Lasers 2017-06-14 Offset Scan, 39.1 W, 10% Repump, Redshift T2

Two Toptica Lasers 2017-06-16 Offset Scan, 39.1 W, 10% Repump, Redshift T2

Conclusions

- Increased return flux by 1.6× versus a single Toptica laser
- Complicated interaction between two polarizations
 - Results of wavelength offset scans varies from night to night
 - Peak flux usually ~ 200 MHz offset
 - Features at 60 MHz and 94 MHz offset (credit to R. Holzlöhner)
 - Likely due to competitive down-pumping
 - Would like to collaborate with others to model this behavior
- Perhaps slewing the beacon could further improve return flux
 - Plan to conduct scans while slewing this fall
- Plan also to measure bandwidth of individual lasers
 - Using a ~100 kHz bandwidth low-power laser from Toptica

Asteroid (22) Kalliope & Moon Linus

- Observations made over 4 months: 2016-11-07 to 2017-02-10
- Sodium LGS 40 W with re-pumping (4 W into D₂b)
- Kalliope V = 10.9
- Kalliope–Linus $\Delta J = 2.7$ to 3.5
- Separation = 0.2 arc-sec to 0.8 arc-sec

Images by J. Drummond

Two Toptica Lasers 2016-06-17 Offset Scan, No Repump

Two Toptica Lasers 2016-06-22 Offset Scan, No Repump

Two Toptica Lasers 2016-06-22 Offset Scan, 10% Repump

Two Toptica Lasers 2016-07-12 Offset Scans

Two Toptica Lasers 2016-07-13 Offset Scans, Az = 0, El = 70

Two Toptica Lasers 2016-07-14 Offset Scans, Az = 0, El = 70

Two Toptica Lasers 2016-07-14 Offset Scans, Az = 180, EI = 70 Half are opposite handedness circular

