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ABSTRACT

Most of the control laws used in AO require one or several matrix-vector multiplies, at frequencies around 1
kHz. With the Extremely Large Telescope (ELT) generation, the real-time control of the AO loop becomes one
of the most challenging issues due to the high computational power required (large matrices and high frequency)
and the limited energy footprint inherent to the telescope location (based in isolated regions). The Green Flash
European project is in line with this challenge and aims at building a prototype for a Real-Time Controller
(RTC) at the ELT scale. We propose a GPU-based solution because of their energy efficiency and throughput
capabilities. In order to meet the requirements of an AO loop, in terms of jitter and throughput, we chose a very
low level approach relying on persistent kernels to handle all the computational steps from pixels calibration
to slopes and command vectors computation. This approach simplifies the latency management by reducing
the communication overheads but led us to re-implement an entire AO control loop relying on some GPUs
standard features : communication mechanisms (guard, peer-to-peer), algorithms (generalized matrix-vector
multiplication, reduce/all reduce) and new synchronization mechanisms on a multi node-multi GPUs system. In
this paper we detail the context and the data pipeline of the RTC and report the performance (time, jitter) we
obtained and the scalability of the solutions on the NVidia DGX-1 platform.
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1. INTRODUCTION

SPARTA,1 ESO Standard Platform for Adaptive optics Real Time Applications, has been used to drive a variety
of AO systems, ranging from single conjugate AO systems with less than 100 actuators to much larger XAO
systems like SPHERE and is used today with the multi-Laser AO Facility (AOF). SPARTA was developed as a
response to the need for a standard platform, serving all AO projects foreseen for the VLT instrumentation, by
using common components and commercial hardware.

The final design can be represented as an hybrid cluster hosting CPUs (PPC), FPGAs and DSP modules.
FPGAs are used for input/output processing and operations which are largely integer based and highly parallel
(wavefront processing, i.e. centroiding from sensors images), DSP modules are used to perform floating point
operations and operations which require significant memory (wavefront reconstruction, i.e. MVM) and CPUs are
used for operations which require significant algorithmic complexity and whose definition can evolve with time.
Additionally, a co-processing cluster is coupled to the RTC box, as a supervisor module receiving telemetry data
and providing regular updates to the controller. This is a non real-time module interacting with the RT box
which is based on a commodity cluster solution.

To reach the delivered performance for the AOF2 (almost 12 GMAC/s), the RT box includes 4 hybrid
FPGA+DSP boards (each hosting 8 DSP modules) and 3 hybrid PPC + FPGA boards. For this dimensioning,
the co-processing cluster is composed of 5 nodes each hosting two quad-core x86 CPUs. However, as stated by the
SPARTA architects: the E-ELT with its instruments poses new challenges in terms of cost and computational
complexity. Simply scaling the current SPARTA implementation to the size of E-ELT AO system would be
unnecessary expensive and in some cases not even feasible.3
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Following the recent evolution of the HPC market, switching to a new strategy for the RT box relying on
custom arithmetic logic processors such as GPUs as a replacement for DSP boards is an appealing option. This
commodity hardware can potentially provide the compute power required at a limited cost and with a relative
energy efficiency. Moreover, comprehensive and optimized programming models have appeared, such as CUDA,
OpenMP or OpenCL, with support for mainstream mathematical libraries, which fits well with the requirement
for an expandable solution based on standards. Finally, the vendors road map is robust and proceeding at a fast
pace providing regular architecture and performance enhancements, with for instance the recent development of
optimized tools to leverage the compute power of multiple GPUs in shared memory configurations.

In this paper, we review the challenges of designing a full scale RT box prototype based on GPUs, in the
context of the Green flash project.4 We give an overview of the different hardware systems and how we drive
then to address the AO constraints.

2. REAL-TIME PIPELINE

The role of the real-time data pipeline is to compute the command vector for the DM from the WFS data. It
proceeds in three successive steps (outlined in figure 1):

• Pixel calibration (dark subtraction, flat field, background subtraction)

• Slopes computation (including pupil registering with a bi-linear interpolation, gradients computation (or
center or gravity computation for SH WFS) and reference slopes subtraction)

• Commands vector computation

Figure 1: Typical real-time data pipeline, with compute sub-modules in blue, and main data in green.

In the following, we will focus on the last point (Commands vector computation) as it dominates the com-
putation time.

Most of the systems on-sky today rely on a linear control law, involving a measurement vector and a control
matrix to produce a command vector. On top of this baseline, predictive control or tomography require additional
real-time processing of the produced data. For instance, in the case of a tomographic AO system,5 a typical
scheme is to compute a wavefront reconstructor based on a Minimum Variance approach and use pseudo-open
loop data (POL), i.e. data reconstructed from the last command vector. In this POL Control scheme, two matrix
vector multiplies of equivalent size are required to compute the wavefront at each iteration.

The main following steps will be considered in the next sections: First, compute the pseudo-open loop
measurement vector the two last command vector and the interaction matrix D:

~Mol[k] = ~M [k] −D (a~c[k − 2] + (1 − a)~c[k − 1]) (1)

Then, compute the raw tomographic vector, using the reconstructor matrix R

~e[k] = R ~Mol[k] (2)

Finally, get the vector command by smoothing the raw vector with the last command :

~c[k] = g~e[k] + (1 − g)~c[k − 1] (3)

This data processing pipeline can be implemented using 2 different approach :



• Synchronous execution: in this case, the processing pipeline starts only when the entire frame is transferred.

• Asynchronous execution: in this case, data can be processed by blocks. The pipeline starts when it
receives a certain part of the frame, during which the pseudo-open loop measurements are computed.
Then, it performs slopes computations and the MVM with the available slopes. It stores the partial result
and waits for the next part of the frame. This strategy is more efficient when the fame is large and requires
significant time to be uploaded in the real-time data pipeline.

These two execution scheme are outlined in Figure 2.

Figure 2: Synchronous (left) and asynchronous (right) execution pipeline.

Considering these two execution schemes, the matrix-vector multiply (MVM) algorithm can be implemented
following two approaches described in the following diagram.

Figure 3: Synchronous (left) and asynchronous (right) MVM computation.

The synchronous MVM computation consists in fully accumulating values on a temporary local memory and
then exporting the result to the command vector. In this case, only one reduction is computed for each command
vector component.

The asynchronous MVM strategy will do the same operations but limited to a group of slopes. In order to
limit the quantity of local memory, the reduction is done for every chunk of available slopes. The main benefit
of this strategy is that the MVM computation can be done during the frame transfer.

Several tests were performed and it appears that at this time, the first strategy (synchronous execution with
sequential Slopes/MVM processing) is much faster using 95% of the sustained peak bandwidth of the GPUs
where the asynchronous execution only uses 44% of the sustained peak bandwidth (this result is due to the high
quantity of reduction, it is being optimized). These results show that our implementation is also consistent with
reference solutions like KBLAS.

3. SYSTEM DIMENSIONING

In this study, we have considered two different scales of systems for the E-ELT: Multi-conjugate AO with 6
WFS and 3 DMs and Single Conjugate AO with a single WFS and a single DM. The main system parameters



are outlined in the table below. The numerical precision on the camera pixels is taken to be unint16 and the
numerical precision on the MVM computation is taken to be float32. For the SCAO case, we have considered to
kinds of system dimensioning, using either a Shack Hartmann WFS (SCAO1) or a pyramid WFS (SCAO2).

Table 1: System dimensioning

Name Nwfs Frame size matrix size mem. footprint frame rate throughput MVM FLOP/s

MCAO 6 6x 800x800 77kx15k 39.1Gb 500 FPS 6x5 Gb/s 2.4 TFLOP/s

SCAO1 1 800x800 12kx5k 2.2Gb 1kFPS 10.2 Gb/s 136 GFLOP/s

SCAO2 1 240x240 12kx5k 2.2Gb 1kFPS 1 Gb/s 136 GFLOP/s

At each iteration, the execution profile is dominated by matrix-vector multiplies. The FLOP requirement
as been derived by accounting for 1 multiplyaccumulate (MAC) or 2 FLOP per matrix’s element. The cost of
performing the centroiding is not taken into account here. For MCAO: two MVM 76kx15k leads to 2.4 GMAC/s
or 4.8 GFLOP/s. At 500 FPS this gives 2.4 TFLOP/s. For SCAO: a single MVM 12kx5k leads to 68 MMAC/s
or 136 MFLOP/s. At 1k FPS this gives 136 GFLOP/s

In the MCAO case, we consider a framerate of 500 FPS and asynchronous execution. A part of the frame
transfer is used to recover the POL data, as needed by the pseudo-open loop scheme described above, which
makes the transfer delay constraint much smaller. The remaining time can be used to compute block per block
the current WF measurements from the WFS frame and the corresponding vector command during the transfer.
So the time between the arrival of the last block from the WFS frame and the time at which the command is
sent is the main dimensioning factor for the real-time pipeline.

For the SCAO2 case, considering a pyramid WFS, the framerate goes up to 1k FPS and the frame transfer
can’t be overlapped with computation. However, the time needed for the transfer is more than 40 times smaller.
The lower time transfer allows us to compute the WFS measurement in a first step and proceed with the matrix
vector multiply in a second step.

4. HARDWARE SPECIFICATIONS

Different kinds of hardware accelerators are available on the market but GPUs are particularly suitable for these
tasks considering their high throughput and high memory bandwidth. We have tested our pipeline on several
generation of GPUs to study the scalability over the architecture evolution. The specifications of these GPUs
are outlined in the table below.

Table 2: GPU specifications

Name Architecture Peak perf (float32) mem. bandwidth ECC Power (W)

Tesla P100 Pascal 9.3 TFLOP/s 5760 Gb/s Yes 250

Tesla K80 Kepler 8.5 TFLOP/s 3840 Gb/s Yes 300

Quadro M6000 Maxwell 6.1 TFLOP/s 2539 Gb/s No 222

Tesla K40 Kepler 4.3 TFLOP/s 2304 Gb/s Yes 235

MVM is a I/O bound algorithm and for this kind of computation the memory bandwidth is the main
dimensioning factor more than the computing performance (estimated from the number of computing cores and
their clock rate). A simple way to compute the true performance peak and the number n of GPU needed is to
use this simple equation :

N =
Req

B̃/8 ×OI
(4)



in which Req is the compute requirement expressed in GFLOP/s, B̃ is the measured sustained memory bandwidth
and OI the operation intensity, i.e. the ratio between the number of FLOPs and the number of non cached
memory accesses. For a MVM using 32 bit arithmetic, this ratio is 0.5 (and 1 for 16 bit).

For each of these GPU technologies, we have measured the sustained memory bandwidth using the unitary
tests provided with the CUDA toolkit from NVIDIA. The obtained results with and without ECC are reported
in the table below.

Table 3: Measured GPU performance

Name Architecture Peak BW sustained BW sustained BW (ECC) N N (ECC)

Tesla P100 Pascal 5760 Gb/s 3945 Gb/s 3945 Gb/s 8 10

Tesla K80 Kepler 3840 Gb/s 3200 (83%) 2760 (72%) 12 15

Quadro M6000 Maxwell 2539 Gb/s 1968 Gb/s (77%) N/A 20 N/A

Tesla K40 Kepler 2304 Gb/s 1888 (82%) 1664 (72%) 21 23

For this type of processing, the controllers use mostly floating point numbers encoded in 32 bits (IEEE 754).
The accuracy achieved by this encoding allows to control a deformable mirror with values remaining near 0
(close loop systems work close to 0). One solution under consideration is to encode the numbers with 16 bits.
The benefits are significant: reduction of the required space and bandwidth by 2. On current architectures, the
calculation is however always performed with 32 bit numbers. The following table summaries the precision that
can be obtained using both these encoding.

Table 4: Precision summary

Precision (bit) Exponent (bit) Fraction (bit) Min positive value Max positive value precision near 0

32 8 23 1.18 × 10−38 1.7 × 1038 1.4 × 10−45

16 5 10 6.10 × 10−5 65504 5.96 × 10−8

With our problem dimensioning, where the bandwidth is by far the most important constraint, using 16 bit
numbers in place of 32 bit number can reduce by 2 the number of GPUs needed. This will be further investigated
in a following paper.

5. PROPOSED ARCHITECTURE

With a hard real-time constraint, we need time determinism in order to ensure a stable loop running at framerate
in the range of thounsands of FPS. It is commonly assumed that a maximum jitter of 10% on the overall latency
budget is acceptable.

As a first estimate, with existing GPU architectures, the main jitter source in CUDA applications comes
from the kernel scheduler using the CPU and introducing many CPU-GPU communications. Another significant
source of jitter comes from copying the data to and from the GPU using a CPU process. This is well demonstrated
in the figure below.

But once a block of threads is launched on the GPU, using only on-board memory, it cannot be stopped
until it finishes its work. A simple solution consists in launching a persistent kernel which never stops until a
command is sent through a memory polling mechanism. This approach is described in Figure 5. On the left, a
typical pipeline involving synchronization between processes on the CPU and on the GPU and on the right, the
persistent kernel approach in which the CPU is mostly IDLE.

However the solution introduces a huge constraint in the implementation, it does not allow the use of any
existing standard library. Added to this is the necessity to use the correct number of blocks and threads to use



Figure 4: Typical measured execution times when copying data to the GPU sing the standard memcopy API provided
in CUDA and typical jitter obtained in launching a CUDA kernel from a CPU process.

100% of the GPU capacities in terms of maximum number of blocks and threads per block. All blocks or threads
additionally created beyond the GPU limits will never be launched introducing computation errors. Another
critical point is concurrent accesses. We need to discard most of them and introduce a deterministic way to
perform access. This is handled at the algorithmic level.

Figure 5: Classical approach for a GPU pipeline (left) compared to the persistent kernel approach (right).

In order to avoid any CPU process to interfere with the RT pipeline on the GPU, it is also mandatory to
implement direct memory access between the frame grabber and the GPU and to consider the full pipeline as a
stream of data from the WFS camera to the DM. This is depicted in Figure 6. In a classical approach (left), data
from the WFS is transferred to the host main memory involving a CPU process, then copied to the GPU memory
involving another CPU process. On the data processing side, several kernel launches and synchronizations with
a CPU process can also occur.

When direct memory access and persitent kernels are implemented concurrently (right), the CPU remains
IDLE as data are exchanged directly through the PCIe bus between the frame grabbing device and the processors.

In the generic node architecture we propose, the node consists in low latency interconnects and compute



Figure 6: Data transfer to the GPU, with (right) and without (left) direct memory access.

Figure 7: Generic multi-GPU system architecture.

units (GPUs) linked by a PCI-e bus. The node also need a host (CPU) in order to manage the PCI-e bus and
communication with others nodes. All GPUs on the same node can directly interact using the PCI-e bus. The
transfer limit depends on the PCI-e bandwidth but also mostly on the GPU copy engine performance ( 80Gb/s
for the Kepler architecture).

This multi-GPU strategy requires the implementation of some hierarchy between the various processor and
we have chosen the scheme represented in Figure 7. One of the processor is chosen as the master that directly
interacts with the data interface. This is where direct memory access between the fraame grabber and the
GPU is implemented. This master processor is connected to other slave processors, through high speed links to
distribute the data efficiently. When the load for an iteration is executed, a final synchronization step between
the slaves and the master allows to gather the data on the latter to be sent directly to the DM interface.

The Pascal architecture also introduces new features like 16 floating point numbers processing units and a
new type of random-access memory that hugely increases the bandwidth. Additionally, NVlink a new kind of
interconnect between GPUs, several time faster than PCIe, is available with the P100 architecture. With the
new Pascal architecture, NVIDIA has made available a single node with 8 Tesla GP100 and 4 additional PCI-e
ports for communication (first designed for infiniband boards). This single server, code named DGX-1, should
be sufficient to run the MCAO pipeline (with ECC off). This should be compared to the 3 to 4 servers hosting
Tesla K20 GPUs estimated from Table 3.

In this single server configuration, the NVlink interconnection between the GPUs is arranged as a mesh,
composed of two main blocks interconnected to two PCIe interfaces attached respectively to the two CPU



Figure 8: Mapping the generic multi-GPU system architecture on the NVIDIA DGX-1 server.

sockets. Two GPUs of each of these blocks have access to each PCIe bus and the interconnection between these
two PCIe interface is done through the CPU sockets.

With this setup we chose to identify one RTC master, that synchronize the execution over the full pipeline
and two node masters (on each blocks of the mesh), one of which being also the RTC master. The other GPUs
are slaved to both these node masters. This is depicted in Figure 8. Each PCIe slot can then be populated with
a frame grabber or generic network interface. This is pictured in Figure 9. Dedicated development for such a
smart interconnect are presented by Perret et al. in this conference.

Figure 9: Proposed implementation on the NVIDIA DGX-1 server.



6. PRELIMINARY RESULTS

An experimental setup was implemented using a DGX-1 server and simulated data. Several system dimensioning
were assessed from E-ELT scale SCAO to LTAO and MCAO. The following table outlines the various AO system
complexities that were simulated.

Table 5: Assessed AO system dimensionings

Name N slopes N actuators Goal frame rate

SCAO 10048 5316 1000 FPS

LTAO 60288 5316 500 FPS

MCAO 60288 15316 500 FPS

For the SCAO case, a single GPU was used to perform the pipeline. For the LTAO case, 4 GPUs, including
one master and 3 slaves, were used in a single node, and for the MCAO case, 8 GPUs were used, spanning over
2 nodes in the slaves/master configuration showed in Figure 8.

In the pipeline we have tested, a set of simulated images resides on the host. For the LTAO and MCAO cases
6 images are sent to the GPUs from the host at each iteration (shared equally between the node masters in the
MCAO case) while only a single frame is sent to a single GPU in the SCAO case. For the latter we consider the
SCAO1 scheme, with a Shack-Hartmann WFS. The slope computation is done on the node masters and the slope
vector is then shared equally between the node master and the its slaves. Each GPU then computes a partial
command vector corresponding to its share of slopes and of the command matrix. The resulting contributions
to the total command vector are then gathered hierarchically by the node masters and then by the RTC master.

In the SCAO case, the pipeline is over at this point. In the LTAO and MCAO cases, where a POL controller
is implemented, the final command vector is then dispatched over all the GPUs where each partial slopes vector
is computed using the corresponding part of the interaction matrix. This partial POL slopes vector is then added
on top of the partial slopes vector produced by each node master from the images before doing the control MVM.

The performance in terms of time to solution and jitter are shown in figure 10 as histograms of the pipeline
execution time (in s) over 100k iterations (hence 100 s of operations of the SCAO system and 200 s of operations
of the LTAO/MCAO systems).

Figure 10: Performance of the pipeline for various system dimensioning and numbers of GPUs. Left: SCAO case for
our persistent kernel approach (orange) and a standard (non persistent) kernel approach (blue). Right, performance for
LTAO on 4 GPUs (blue) and MCAO on 8 GPUs (orange), using our persistent kernel approach.

In the SCAO case, we have compared the persistent kernel approach developed in this study to a classical
(non persistent) kernel approach, in which the pipeline is regrouped in a single kernel which is launched at each
iteration when data has been received, through a CPU process. The results show that the persistent kernel
approach helps to reduce significantly both time to solution and jitter. These results show that the required
performance of 1 kFPS or 1ms per iteration can be obtained on a single newest generation GPU following the



persistent kernel approach. In the standard kernel approach, the mean time to solution obtained on a single
GPU is larger than our initial specifications and a number of outliers around and beyond 1.5ms are observed
that would lead to lost frames in a real system.

Concerning the LTAO and MCAO cases, only the persistent kernel approach has been assessed and the results
show that a time to solution below 2ms can obtained for a LTAO system using only 4 GPUs, with reduced jitter.
For the MCAO case, 8 GPUs are not enough to bring down the time to solution below 2ms. These plots however
demonstrates that scaling up this pipeline to multiple GPUs over several nodes interconnected through NVlink
does not impact jitter significantly. This is a major result of our study.

We have also estimated the achieved performance in terms of GMACs obtained to be compared with the
sustained memory bandwidth of this kind of GPUs. This is displayed in Figure 11 for each case. In the LTAO
and MCAO case, both the total performance and the performance per GPU has been displayed.

Figure 11: Performance of the pipeline in GMACs for various system dimensioning and numbers of GPUs.

These results show that a better performance per GPU is obtained in the LTAO and MCAO case as compared
to SCAO. Indeed, the LTAO case is 6 times larger in terms of number of operations than the SCAO case and is
treated with 4 GPUs. The amount of computations done by a single GPU is thus larger and allows to get closer
to saturation in terms of compute engines occupation on the GPU. In the MCAO case, the problem scale is 18
times larger than is in the SCAO case and is processed by 8 GPUs.

If we look closer to these results and try to compare them to the GPU specifications recalled in table 2,
the Tesla P100 has a theoretical memory bandwidth of 5760 Gb/s. The amount of data to be assimilated by
the compute engines to perform the multiply-accumulates for a single iteration in the MCAO case is 60288 ×
15316×2×4 = 7.3Gb. Each iteration is performed in about 2.5ms which leads to a measured sustained memory
bandwidth of 2954 Gb/s or 51% of the theoretical memory bandwidth as given and 77% of the sustained BW as
given in Table 3. Even though this probably requires some additional optimization, it shows that our approach
is able to leverage most of the available bandwidth to execute the pipeline.

7. CONCLUSION

The developments reported in this paper, show how an efficient real-time data pipeline for AO can be implemented
on GPUs while being scalable and fulfilling the time determinism constraint imposed by such a system. Persistent
kernels and direct memory access are key to build a system with low latency and jitter.



Future developments will be oriented toward more portability for instance through the use of dedicated
runtime systems, allowing to distribute computing load over heterogeneous resources under time deterministic
constraint using a static scheduler.6
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