Towards minimum-variance control of ELTs AQO systems
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ABSTRACT

Minimum-variance control of adaptive optics (AQO) systems relies on a stochastic dynamical model of the per-
turbation and on models of the components, including loop delays. Resulting LQG controllers have been imple-
mented in SCAO and WFAO both on laboratory benches and on-sky. Their efficiency has been recognized in
several modes of operation, e.g. i) on-sky control of TT or low-order modes with vibration mitigation (SPHERE,
GPI, CANARY, Raven, GeMS, in H2 formulation at the McMath-Pierce solar telescope) ii) full SCAO mode
(CANARY) and MOAO mode (CANARY, Raven) and iv) in general it is advocated to control the low-order
modes in laser tomography systems (E-ELT HARMONI LTAO, NFIRAOS). We first point out two examples
related to VLT AO controllers to illustrate the need for RTC flexibility. The implementation of LQG control
in the framework of the future ELTSs raises many questions related both to real-time control computation and
associated parameter updates (at a far lower rate), and to the performance that can be reached compared with
simpler control strategies. By gathering many lab and on-sky results, we draw the performance trends observed
so far. We then outline some promising research directions for control design and implementations for future
ELTs AO systems.
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1. TWO LESSONS FROM VLTS

At the time of NAOS first light in the early 2000’s, it rapidly appeared that although extraordinary improvement
was obtained, the AO system suffered from unforeseen vibrations affecting low-order modes (at least up to the
tenth Zernike mode).** These vibrations, detected on sky, could not be all filtered out with an optimized
integrator in the loop — they could even in some cases be amplified — leading to significant performance
degradation: 15% SR loss was reported for some data sets. Since then, one could think that another more
adapted controller could have been implemented in the RTC, in order to counteract these nefarious effects. This
is not so simple, as it is complicated and costly to upgrade an RTC designed more than 15 years ago.

Drawing on this experience, possible vibration mitigation on tip and tilt modes has been integrated since the
early design stage in SAXO,* the SPHERE* XAO system installed on the VLT. The control scheme features
the possible use of a tip/tilt LQG controller combined with an integrator for the high orders modes. It is
the only controller on an operational system that adapts itself to perturbation conditions. Impressive results
have been obtained, reaching for example more than 90% SR in H band in high flux conditions.!® The loop
sampling frequency was nominally 1.2 kHz, and it has been decided to provide another operational case with
300 Hz sampling frequency. However, the total loop delay in this case appeared to be 1.4 frame, while this LQG
controller has been designed for a two-frame delay. This risks to destabilize the control loop, and in order to
mitigate that risk, the range of vibrations that can be corrected would have to be limited. In practice, the LQG
controller has been limited to correct for turbulence only in this 300 Hz case (i.e. no vibrations are accounted
for).?> Modifying the controller to handle variable loop delays is straightforward (it has been tested on-sky
on CANARY in 2014 for the LTAO mode) but requires a slight modification of the Kalman filter and control
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computation in the RTC (see Section 3). This is not so easy, as it is complicated and costly to upgrade an RTC
designed recently.

The moral of these stories is that there will always be unforeseen phenomena (due to spurious signals, aging
of the components...) or new operating modes (with possibly new components, etc.), and once designed, RTCs
are not easily modifiable, so that a natural question that arises is “How far should a controller be flexible to face
unanticipated events?”

2. TOWARDS HIGH-PERFORMANCE CONTROL FOR ELTS

Control designers of ELT-sized systems thus include vibration mitigation for low order modes. For example, five
modes will be possibly controlled with LQG in TMT NFIRAOS!* (this is expected to bring significant improve-
ment of sky coverage®®), the higher orders being corrected with MMSE and pre-conditioning methods.'® !9 For
E-ELT HARMONI SCAO and LTAO, LQG control is envisioned for the baseline compensation of tip, tilt and
focus modes.® It is indeed expected that these types of controllers will also be able to efficiently compensate the
very high energy level of the atmospheric turbulence for these modes.®

Trends in LQG control performance have been reported for ELT AO systems,® showing the potential im-
provement with respect to integrators. Due to the telescope aperture size, the energy of the low radial orders
is much higher than for VLTS, and low radial orders until at least 3 should be considered for high performance
control, integrator rejection being not strong enough.*” A natural question that arises is then “How many low
order modes should be accounted for in a high performance ELT AO controller?”

Besides these aspects linked to the atmospheric turbulence, one can also list a number of phenomena that are
difficult to fully predict: effect of wind shake and of vibrations on ELT huge structures, leading to disturbance
spectra probably even more complex than those observed until now on VLTs, effect of dome turbulence, with
non Kolmogorov statistics and non stationary behavior impacting at least low temporal frequency components
of the disturbance. Control performance specifications for future ELT AO systems include these phenomena as
far as possible. But reality may be ferocious with predictions, leading to potentially envision controller upgrades
earlier than expected.

In this regard, keeping some RTC flexibility and scalability to allow for controller evolutions seems reason-
able.5720’24

3. MINIMUM VARIANCE AO CONTROL: PERFORMANCE TRENDS

So far, a number of laboratory and on-sky experiments have been conducted with an LQG controller in the
AO loop, showing the growing interest of the AO community for these types of control structures, technology
evolution having helped considering them as viable. However, minimum variance AO control, the solution of
which is an LQG controller,?® is optimal only with respect to the disturbance model used in the state-space
representation. Otherwise, one may hope that the chosen disturbance model is good enough to impact favorably
on control performance.

To give a more precise idea of how an LQG AO controller is built, let us take a simple example.?%:30 If ¢,
is the disturbance and ¢}>* = Nuy_; is the correction phase generated by the control vector uy_i, with N the

influence matrix, the minimum variance control to be applied at time k is obtained as
Py = N1, (1)

where N1 is the pseudo-inverse of N and q§k+1| & is the minimum variance estimation of ¢y1 based on all available
measurements until time k. This minimum variance prediction can be obtained as the output of a Kalman filter,
provided that a state-space representation of the whole system is available. The difficulty lies therefore in a good
prediction of the disturbance, which depends on the chosen model. As proposed in the first lab experiment,3%
let us take a disturbance ¢ simply modelled as a vector-valued auto-regressive process of order 1:

Pr1 = A10k + vk, (2)



where ¢ is the disturbance represented by Zernike coeflicients, A; is a diagonal matrix with coefficients values
depending on the Zernike mode, and v is a white Gaussian noise with known covariance matrix ¥,,. Kolmogorov
spatial correlations for ¢, represented by the covariance matrix ¥4, are fed into the model by taking for 3, the
following value

T, =3, — A1T4AL. (3)
The measurement equation, for a two-frame delay SCAQO system, is standardly taken as
Yk = Dé—1 — DNug—2 + wy, (4)

where D is the wavefront sensor matrix and w is the Gaussian white measurement noise. Based on these models,
a simple state-space representation is constructed by taking as state vector

v ( o ) (5)

Tp+1 = Al‘k + Ty, (6)
Yk = Cxp, — DNuy_2 + wg

This leads to the state space model

" A_<‘i1,1 8),0_(0D),F—(é) (7)

and where [ is in each appearance the identity matrix with appropriate dimensions. Any linear modelling of the
disturbance can be embedded in a state space representation of the form given in Eq. (6). The corresponding
Kalman filter and control computation can then be obtained as

T = AZp—1jk—1 + Hoo(yp — CAZp_1jp—1 + DNug_2), (8)
Up = NTC¢A.’fk|k,

where H,, is the asymptotic estimation Kalman gain and Cy is a matrix extracting ng+1|k from AZyp. Ac-
counting for a (1 + ¢)-frame delay, 0 < § < 1, instead of 2 simply consists in replacing in the upper line of
Eq. (8) ug—2 with dug_2 + (1 — d)ur—1 and in the lower line A with 6A + (1 — §)I (which boils down to
up = N1 + (1 — 0)dpr))-

The disturbance model, and therefore the Kalman filter in Eq. (8), may be used for any set of modes that
are to be compensated with an LQG controller, or for the whole disturbance as in.?%47 It is worth noting that a
state-space representation such as Eq. (8) can be used to implement any linear controller,? from an integrator
to a POLC regulator'? or an MMSE reconstructor.!” Therefore, depending on how these equations are coded
in the RTC, more or less flexibility will be obtained on the controller structure. This is a crucial point when
facing unforeseen disturbances. This flexibility enables to modify the disturbance model structure (i.e. both the
disturbance model and the number of modes, or equivalently the size of matrix A, that need to be accounted
for) according to future on-sky experiments.

At this stage, an overview of experimental and on-sky results obtained so far is interesting to draw the
performance trends of LQG or more generally of observer-based controllers. To do so, we have gathered in
Tables 1 and 2 a number of laboratory and on-sky results, with qualitative performance levels as reported by
the different authors. The label “Year” corresponds generally to the year of experiment; “Control” details if
it is tip/tilt only (TT), and what kind of controller has been used for comparison (e.g., VS integ means a
comparison with an integrator); “Model” refers to the structure of perturbation model used to build the Kalman
filter (Subspace identification is a case where there is no particular model structure, and where in particular A,
C and H,, are directly estimated from the data); “Size X” is the size of the state vector; “Param” indicates
the parameters needed to tune the controller; “F's” is the real loop frequency of the hardware; “Perf” indicates
wether the performance is consistent with what is expected. The purpose is here to gather many results in order



Control

Petit & al 2005 SCAO DMG69+2 AR1 278 0, V 60Hz =+
vs integ
off-axis 600 60Hz  +++
2006 SCAO AR1+vibs 278+4 10, V, 60Hz  +++
2x2 vibs
Hinnen & al 2006 SCAO DM37 Subspace 256 Regularization  4-20Hz  +++
vs leaky integ  jdentification diag matrix Q
Costille & al 2009 MCAO DM52+88 AR1, 2L 1240 r0, V, Cn2 10Hz  +++
2DM Vsinteg
2010 LTAO 3 NGS 1240 10Hz  +++
Sivo & al 2011 SCAO DM52+2 AR2+vibs 278 r0, V, 150Hz  +++
CANARY vs integ 2x10 vibs
MOAQ vs APPLY 3NGS, 2L 860 r0, V, Cn2 150Hz =+
Agapito & al 2011 SCAO TTM+integ  AR1+vibs 6 ro, V, 400Hz  +++
LBT bench vs integ 2x1 vib
Parisot & al 2011 LTAO DM52 AR1 598 ro, V, Cn2 12Hz  +++
1 DM VS POLC 4 NGS, 3L
Guesalaga & 2013 MCAO T™™ AR1+vibs 5 2 vibs 300Hz  +++
al, GeMS vs integ
Jackson & al, 2014 MOAQO DMY7+MMSE Zonal 97 ro, V, Cn2 50Hz ++
RAVEN VS spatio- +Tay|0r
angular LQG

Table 1. Laboratory results of LQG or LQG-like controllers. The last column indicates qualitative performance with
respect to a reference controller. Related papers: Petit & al,>*3” Hinnen & al,?® Costille & al,”** Sivo & al*® (CANARY
bench), Agapito & al' (LBT bench), Parisot & al,** Guesalaga & al*? (GeMS bench), Jackson & al*® (RAVEN bench)

@McMath- 2010 SCAO TTM Subspace 4 Regularization 250Hz  +++
Pierce identification factor (scalar)
CANARY 2012 SCAO DMs52 AR2+vibs 556 PSD 150Hz +++
vs integ 2x10 vibs
2013 MOAO vs APPLY 1960 r0, V, Cn2, 150Hz =+
2x10 vibs
2014 LTAO  vs PoLc 1960 150Hz ++
RAVEN 2014 MOAQ DM121+MMSE  SA LQG 7x121  r0, V, Cn2 100Hz =
VS spatio-angular AR1 -
LQG
SPHERE 2014 XAO TT™ AR2+vibs 44 PSD 1.2kHz +++
2x10 vibs
GPI 2016 XAO Tiptilt/ AR1 2304 PSD 1kHz  +++
focus Fourier 2x2 vibs
SCExAQO 2016  XAO TT™ AR2+vibs 24 PSD 3.5kHz  +++
2x5 vibs

Table 2. On-sky results of LQG or LQG-like controllers. The last column indicates qualitative performance with respect
to a reference controller. Related papers: McMath-Pierce teslescope,’! CANARY,*®4” RAVEN,*! SPHERE,*® GPI,*

SCExAOQ.??



to draw some trends: with different systems and operating conditions, is there a significant trend of LQG results
to outperform the reference controllers taken by the authors?

It is here time for a small reminder. A couple of years before 2012, SCAO on sky with full LQG control was
deemed impracticable, because computationally untractable, certainly too difficult to tune and unable to correct
for real turbulence efficiently, because of unadapted priors, not to even mention tomographic LQG... From the
results in Table 2, it is clear that with a model rich enough, SCAO LQG or TT LQG (SCAO or XAO) give very
good results. A detailed performance analysis would still be needed to better understand what are the error
budget terms that are most impacted when using this type of controller.?” In particular, it would be interesting
to compare temporal and aliasing errors when using simplified models for the high-order modes as those used on
sky with CANARY*" with refined dynamical models.

In wide-field, on-sky results in MOAO are of course successful in the sense of running full tomographic
LQG controllers on-sky. However, they do not present a clear and systematic improvement compared with the
references. The fact that MOAO is open-loop makes it probably more difficult to compensate for model errors,
contrarily to the closed-loop case (MCAQO, LTAO). It is then natural to ask oneself “Is it possible to derive more
efficient disturbance dynamical models?” which concerns wide-field as well as potentially any AO concept. The
developments of more efficient models is here a key point, and several solutions have been proposed in order to
take advantage of the frozen flow characteristics of the turbulence3® through explicit (parameterized) or implicit
(non parameterized) wind-direction-dependent models.? 1°:18,23,25,28,38,40 The computational complexity and
possible degree of parallelization is then extremely variable.

4. REDUCING THE COMPUTATIONAL BURDEN FOR ELTS IMPLEMENTATION

To reduce the execution time of control computation, besides the usual sequential processing of measurements
and commands, parallelization has to be considered altogether for models, controllers and identification schemes.
Some highly parallelizable control solutions been proposed®“3 but more efforts should be put on combining
computational efficiency and control performance. Such developments should be conducted in close relationship
with RTC structures, in order to keep all together flexibility, scalability and performance. In that line, the
developments of projects like COMPASS,?! Green Flash?® or DARC? are of particular interest.

Also, depending on the requirements, high-performance controllers need not be implemented on all modes.
As an example, taken from,2” we consider a NAOS-like system in high flux mode with turbulence only (no
vibrations). A significant gap in performance can be reached by controlling 9 modes instead of tip and tilt only,
the rest being controlled with an integrator, with a drop in residual phase variance of about 20%. Considering
what happened with NAOS about vibrations, and the fact that low orders will have much more impact on ELTSs,5
limiting low orders to 3 for an ELT-type AO system seems therefore optimistic. Moreover, control-oriented tools
have been recently developed for performance analysis of high-performance controllers,” 2 enabling altogether a
detailed analysis of a mixed low-order/high-order controller and of disturbance dynamical models efficiency.

With this in mind, RTC flexibility for low orders can be readily obtained by implementing generic controller
structures such as those presented in,?” %2 providing a fully tractable solution when dealing with a few dozen of
modes. For higher modes, it is worth mentionning here that, e.g., for MOAO CANARY, the RTC DARC could
run at 150 Hz with an LQG controller featuring 2000 components in the state vector*® which corresponded to
about 1000 Zernike modes (4 layers with radial orders 14, 18, 22 and 26) controlled with LQG.*> This means that
with a well optimized control scheme and on future hardware, a few thousand components in the state vector is
quite conceivable. And as mentioned before, for even higher dimensions, the massively parallelization capability
should be addressed at the design stage for models/controllers/identification schemes, and in close relationship
with RT'C structures.
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