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Abstract. The non-linear Curvature Wavefront Sensor (nlCWFS) is derived from the successful curvature
wavefront sensing principle but uses a non-linear reconstruction algorithm to maintain sensitivity to low order
modes. It can deliver diffraction-limited images in the visible. Use of the full spatial coherence of the pupil allows
the nlCWFS (D/r0)2 gain in sensitivity, over the SHWFS, at the lowest spatial frequency. When background
limited the nlCWFS sensitivity scales asD4, a combination ofD2 gain due to the diffraction limit andD2 gain
due to the telescope’s collecting power. For a 30 m telescope (TMT) with a seeing of 0.5′′, the nlCWFS requires
22,500 fewer photons than the SHWFS to deliver the same wavefront measurement accuracy at the lowest spatial
frequencies.

1 Introduction

The non-linear Curvature Wavefront Sensor (nlCWFS) is derived from the Curvature Wavefront Sen-
sor (CWFS) proposed by François Roddier in 1988 [1] to measure the curvature of the wavefront
instead of its slope. The principle of this sensor is presented in Figure 1. A telescope of focal length
f images the source in its focal plane, labeled as the nominal focus. A local wavefront curvature that
produces an excess of illumination in a plane before the focus will produce a lack of illumination in a
plane after the focus. The CWFS consists of two detectors placed in the out of focus planes referred to
as Fresnel planes. One detector records the irradiance distribution in the plane of excess illumination
and the second records the irradiance distribution in the plane where there is a lack of illumination.

The two Fresnel planes can also be placed on either side of thepupil plane; both representations are
equivalent and related to each other through a Fourier transform. Hence the light intensity is measured
in planes optically conjugated on either sides of the pupil [2]. CWFSs rely on Fresnel propagation over
distancez to transform phase aberrations into intensity fluctuations. The propagation of the complex
field on either side of the pupil and the contrast obtained between the two fields is derived in [3][4].
These papers show that contrast can be related to the Laplacian of the wavefront, only in the linear
regime when the phase error is less than 1 radian.

2 non-linear Curvature Wavefront Sensor Concept

The nlCWFS moves away from relating the curvature of the wavefront to the contrast measured by the
detector. The nlCWFS is therefore not constrained by the linearity regime in which it is mathematically
permissible to relate the Laplacian of the wavefront to the recorded contrast. The nlCWFS extracts in-
formation from speckles that develop as phase is propagatedfrom the pupil plane. Figure 2 shows
the propagation of a complex field away from the pupil plane along directionz. The pupil diameter is
1.5 m and the field wavelength is 790 nm. The column of images on the right side show intensity mea-
surements made in different Fresnel planes. The Fresnel planes close to the pupil show tight speckles
which encode high spatial frequencies and convert phase into intensity at relatively small propagation
distances. Fresnel planes further away from the pupil show diffused speckles which encode low spa-
tial frequencies, that are converted into signal at relatively larger propagation distances. In Fig. 2 at
z ≈ 22 km we can see that the light rays begin to cross over one another. In this domain the points
in the image plane can no longer be traced back to points in thepupil plane. This is the beginning of
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Fig. 1: Principle of curvature wavefront sensing proposed by Roddier [1]. As the wavefront passes
through nominal focus its curvature reverses sign. A detector placed on either side of the focus can
record the intensity of the wavefront in the two planes.

the non-linear regime where the shape of the wavefront is no longer linearly related to the contrast
obtained in conjugate planes on either side of the pupil.

The nlCWFS is able to sense low and high spatial frequencies simultaneously by recording the
pupil plane wavefront in different Fresnel planes and uses aGerchberg-Saxton reconstruction algo-
rithm to recover the wavefront in the pupil plane. The Fresnel planes can be selected as far as the
lowest spatial frequency, and as close as the highest spatial frequency present in the wavefront. Any
number of Fresnel planes can be selected, however we limit them to four to make the reconstructor
feasible for a real time adaptive optics system. Four Fresnel planes, that represent the range of spatial
frequencies present in the pupil plane wavefront, are selected. The four Fresnel planes can be posi-
tioned at any desired distance with respect to the pupil and need not be conjugated on either side of
the pupil plane.

The non-linearity of the proposed wavefront sensor imposesa significant penalty on the speed of
the the AO control loop. Boot-strapping off of a traditional, linear CWFS could potentially expedite
wavefront correction as the initial compensation is done linearly. The linear algorithm would correct
all phase aberrations in the≈ 1 radian domain before passing on the less aberrated wavefront to the
time consuming, non-linear algorithm used by the nlCWFS. Thenon linear Gerchberg-Saxton recon-
struction process is described in section 3. In order to boot-strap off of a traditional, linear CWFS,
conjugate pairs of Fresnel planes need to be selected on either side of the pupil plane. The optical
design developed later abandons the selection of conjugatepairs due to limited optical-bench space
and constraints imposed by chromatic compensation.

3 Waveoptics Simulations

Theoretical results based on perturbation analysis, carried out by Guyon [5] suggests that the nlCWFS
is significantly more sensitive than the SHWFS at low spatial frequencies. To test the theory and com-
pare the sensitivity of the nlCWFS with the SHWFS we carry out wave-optics simulations in which a
790 nm electromagnetic field originates from a point source,at a distance of 105 m, and is propagated
to the telescope. The size of the telescope aperture isD = 1.5 m. The number of photons simulated
for wavefront sensing is 6.7 × 104, which corresponds to 0.1 ms integration time on a magnitude 10
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Fig. 2: The diverging light rays show how the rays become non-linear at large Fresnel distances. The
arrow points away from the pupil plane and represents Fresnel distance. The column of images on the
right show the speckles recorded at different Fresnel distances. High spatial frequencies encoded in
tight speckles are converted to signal at a relatively smallpropagation distance, where the signal is
linear. Low spatial frequencies encoded in diffused speckles are converted to signal at relatively larger
propagation distances. The signal becomes non-linear atz ≈ 22 km where the light rays begin to cross
over each other. The pupil plane OPD is shown in the top right corner.
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source in a 0.16µm wide bandwidth with 20 % system efficiency. The simulated electromagnetic field
consists of 256×256 grid points spread across 4×D; 64×64 of the central grid points have phase infor-
mation. Two phase screens are used to simulate a two-layer atmosphere prescribed with Kolmogorov
statistics. Fried’s coherence lengthr0 for the two screens is the same but theC2

n profile is integrated
over different path lengths. The Bufton wind profile is used and the velocity is set to 12.5 ms−1. An
example of realistic atmospheric parameters for the Starfire Optical Range is: atmospheric coherence
lengthr0 = 0.075 m and isoplanatic angleθ0 = 9.4µrad at 500 nm. According to the scaling formulas
given in Eq. 1 and Eq. 2 these atmospheric parameters translate toD/r0 = 12.7, andθ0 = 16.2µrad at
790 nm when looking at zenith [6].
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The Greenwood frequency at 790 nm isfg = 171 s−1. The tilt removed wavefront distortion for Kol-
mogorov turbulence averaged over an aperture of diameterD expressed as a root-mean-square (RMS)
value in units of radians of optical phase is [6]:
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According to Eq. 3 forD = 1.5 m andr0 = 0.12 m a realistic wavefront will have 3 radians of RMS
error. The wavefront simulated for the sensitivity analysis has an RMS error equal to 3.48 radians and
is shown in Fig. 3. The simulation parameters are listed in Table 1. Simulations assume both detectors
to be perfect with 100 % quantum efficiency and zero read noiseof. The only source of error in the
simulations is photon noise.

Pupil OPD

Fig. 3: The simulated pupil plane wavefront after tilt removal has an RMS error of 3.48 radians.
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Table 1: Simulations Parameters

Parameter nlCWFS SHWFS
Telescope diameter 1.5 m
WFS wavelength 790 nm
RMS wavefront error 3.48 rad
Integration time 0.001 s
Source brightness 6.7× 104 photons
Fried’s coherence length 0.12 m @ 790 nm
Isoplanatic angle 16.2µrad @ 790 nm
Greenwood frequency 171 s−1 @ 790 nm
WFS detector readout noise 0
WFS detector quantum efficiency 1
WFS subapertures not applicable 32
Fresnel plane distances 287 km, 575 km, 862 km, 1149 km not applicable

WFS detector sampling 64 pixels across pupil 2× 2 pixels per subaperture

Spatial frequency control range 16 CPA at 2×Nyquist
32 CPA at Nyquist

8 CPA at 2×Nyquist
16 CPA at Nyquist

4 Gerchberg-Saxton Reconstruction

For simplicity We have chosen to implement a Gerchberg-Saxton [7] non-linear reconstruction al-
gorithm, however other reconstruction algorithms exist. AGerchberg-Saxton iterative loop is used
to reconstruct the phase sensed with the nlCWFS. The Gerchberg-Saxton reconstruction algorithm,
illustrated in Figure 4 works by propagating complex fields between planes to recover the phase infor-
mation in the pupil plane. The propagation is carried out by computing the Fresnel diffraction integral
which is derived in [3].

The GS algorithm requires high resolution which translatesto large number of camera pixels,
which in turn equates to large shot noise. As the source gets dimmer (mv ≥ 9) the GS reconstruction
degrades because now fewer photons are distributed over a set number of pixels lowering the SNR.
It the number of pixels is reduced then there is not enough resolution for the GS algorithm to extract
all the spatial frequencies and the unsensded modes show up as focus. Therefore an alternative recon-
struction algorithm is required. In section 6 we discuss thedevelopment of a non-iterative, real-time,
non-linear reconstruction algorithm. Reconstruction of asimulated wavefront using the GS algorithm
is show in Figure 5.

5 Sensitivity Comparison

The following formula relates two physical quantities,Σ andN through the scalarβ [8],

β = Σ ∗
√

N (4)

hereΣ is the error per Fourier mode given in radians,N is the number of photons incident on the
detector, andβ represents the sensitivity of the wavefront sensor to a Fourier mode. If photon noise
is the only contributing source of error then the error per Fourier mode given a signal-to-noise-ratio
(SNR), can be determined. For a fixed SNR a lower error orΣ implies a lowerβ which in turn implies
that the WFS requires fewer photons to reconstruct a Fourier mode and is thus a more sensitive WFS.

A Monte Carlo experiment is conducted in which the pupil plane wavefront is generated a thou-
sand times, with photon noise being the only variable parameter between iterations. The thousand
wavefronts are reconstructed with each of the sensors and then decomposed into Fourier modes. The
standard deviation of the Fourier mode amplitude is determined over the thousand iterations and gives
the error per mode, which isΣ from Eq. 4. Details of the Fourier decomposition, Fourier mode cou-
pling, and error per Fourier mode are presented in a separatepaper [9], currently underway. In the case
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Fig. 4: The Gerchberg-Saxton reconstruction algorithm is illustrated. The pupil plane optical path dif-
ference (OPD) shown in the top right corner is propagated to Fresnel plane (FP) 1 where the phase
acquired due to propagation is preserved and the amplitude thrown out. The amplitude measured at FP
1 is imposed and a complex field is constructed using the propagated phase and the measured ampli-
tude. The complex field in FP 1 is propagated to FP 2. A complex field similar to the one constructed
in FP1, is constructed at each of the consecutive FPs and the field at the final FP (here FP 4) is prop-
agated back to the pupil plane. At the pupil plane a flat field isimposed. It takes several iterations of
the Gerchberg-Saxton loop to converge to the pupil plane phase.

of the nlCWFS, photon noise is added at each Fresnel plane. Forthe SHWFS, photon noise is added at
a single detector plane. The detectors are modeled to be noise free and have a quantum efficiency of 1,
therefore the only source of error is photon noise. For the sensitivity analysis we want to determine the
error or standard deviation, due to photon noise, in reconstructing each Fourier mode. We compute the
standard deviation of the amplitude of the 3113 Fourier modes over a thousand iterations and compute
β per spatial frequency for the nlCWFS and the SHWFS. The number of photons needed to reconstruct
each Fourier mode to 1 radian RMS is equal toβ2. For the nlCWFS and the SHWFSβ2 is plotted as
a function of spatial frequency in Figure 6. The Wavefront sensor sensitivity is determined for up to
16 spatial frequencies. The simulated results show that at the lowest spatial frequency the nlCWFS
requires≈ 71 times fewer photons than the SHWFS. On average the nlCWFS requires 12 times fewer
photons than the SHWFS to reconstruct spatial frequencies of1 to 10 cycles per aperture (CPA). The-
oretical estimates based on perturbation analysis predictthat, on average, the nlCWFS requires≈ 14
times fewer photons than the SHWFS to reconstruct the first 10 spatial frequencies [5]. The simulated
results agree well with the theoretical predictions. Note that the source brightness and other parame-
ters used in the theoretical analysis slightly differ from the more realistic, site, and telescope specific
parameters used in the simulations. For instance the theoretical source is much brighter than the more
realistic source used in the simulations, making the simulated source brighter will only improve the
results as the error per mode will decrease. The theoreticalRMS wavefront error is≈ 4 radian com-
pared to the 3.48 radian used for the simulations; the small difference does not effect the results. The
theoretical wavelength is 850 nm compared to the 790 nm used in simulations, and the telescope di-
ameter used in the theoretical analysis is 8 m compared to the1.5 m used in simulations. Despite the
minor differences the sensitivity analysis can be comparedfor similar RMS wavefront errors.
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Fig. 5: nlCWFS Gerchberg-Saxton reconstruction. The top rowshows the amplitude in the pupil and
at each of the Fresnel planes. The middle row shows the phase in the pupil and in each of the Fresnel
planes. The third row shows the input phase, the reconstructed phase and the residual between the two.
Reconstruction after 50 iterations of the Gerchberg-Saxton loop is shown.

The results obtained are quite encouraging and indicate that using the nlCWFS instead of the
SHWFS will make it possible to observe dimmer exoplanets, as the nlCWFS requires significantly
fewer photons to sense the wavefront.

6 Future Work

Simulations comparing the strrehl obtained by closing the loop on the nlCWFS and the SHWFS, show
an improved performance for the nlCWFS for objects that aremv < 9. For dimmer (mv ≥ 9) objects
the GS reconstruction algorithm is unable to reconstruct the wavefront. The GS algorithm requires a
high spatial resolution which means the Fresnel images contain a large number of pixels. Having a
large number of pixels leads to higher shot noise. The shot noise increases as the object gets dimmer
and fewer of the diffracted rays reach the Fresnel planes. Ifthe number of pixels in the Fresnel planes
is reduced, it helps lower the shot noise but also lowers the resolution making it difficult for the GS
algorithm to extract all the spatial frequencies in the pupil. These unsensed spatial frequencies show
up as focus.

Due to the limitations of the GS algorithm we are exploring analternative real-time reconstructor.
The alternative reconstructor represented in Figure 7 is based on concepts from weak-through-strong
scintillation theory. Even if the scintillations incidenton the telescope are negligible, phase aberrations
in the pupil plane cause scintillation inside the optical system, increasing from weak to strong as the
light propagates towards the focal plane. The important scales are the Fried lengthr0, the Fresnel
scaleR f = (λz)1/2 where z is the propagation distance from the pupil, and the pupil diameter D
which limits the maximum spatial scale. Near the pupil plane, R f ≪ r0, irradiance fluctuations are
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Fig. 6: Comparison of the nlCWFS sensitivity with the SHWFS. The number of photons needed to
reconstruct a mode to 1 radian RMS is plotted as a function of the CPA, for up to 16 spatial frequencies.
The sensitivity curve for the nlCWFS is shown in red and that for the SHWFS is shown in green. The∗
indicate the number of photons needed to reconstruct the modes. The∗ represent the individual modes
present in a spatial frequency. The diamond show the mean of the modes over the particular spatial
frequencies.

weak and proportional to pupil plane wavefront curvature. At this range irradiance deviations from
the mean provide a means for measuring the small-scale aberrations, but are insensitive to larger-scale
aberrations. As we move farther from the pupil plane, scintillations increase in strength and exhibit
both small and larger-scale structure. In general, the large-scale scintillation modulates the small-scale
features. The mean irradiance PSD of the large-scale scintillation is described by the low-frequency
series in [10]. Although the smaller-scale features are more complicated than this, if we subtract the
mean irradiance profile and smooth over the smaller features, we are left with just the modulating
profile, which is refractive in nature and is also sensitive to wavefront curvature, but on a larger scale.
Eventually, as we move away from the pupil, the Fresnel scalebecomes comparable or larger than D
and we are limited from seeing larger scales by the pupil. Here the largest aberrations appear as tip-tilt
motion in the beam, while defocus and astigmatism appear as variations in the overall beam width
and shape. The tip-tilt can be measured by a centroid (first spatial moment) of the beam, with greater
sensitivity achieved by using the more distant planes. The defocus and astigmatism can be measured
using the four second-order spatial moments found by integrating over the irradiance. Again, this is
more sensitive in the more distant planes, and unambiguous so long as we are never in the focal plane.

The resulting algorithm is summarized as follows. Collect irradiance images at a number of dis-
tances behind the pupil. After preprocessing the images, the centroid and second moments are com-
puted to give estimates of tip-tilt, defocus and astigmatism. Each of the irradiance images have their
running means subtracted and are smoothed over a size proportional to the Fresnel scale to give a set
of “difference images”. Each resulting image is proportional to the wavefront curvature, but sensitive
to different spatial scales. Since the sensitivities overlap, the mixture will be calibrated and combined
into a single matrix that includes the smoothing and the mixing into a single “reconstructor matrix”
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to be multiplied by the pixels of the difference images. Using the result from just this much of the
algorithm will give a useful estimate of the pupil plane wavefront, but not yet at the full sensitivity of
the nlCWFS. The final step is to use the estimated wavefront to compute the resulting irradiance at the
various camera planes and compare them to the measured irradiance. Since the features have spatial
scales ofλzD , any residuals can be measured to the full sensitivity of thesystem. One way to utilize this
information is to make a single, non-iterative update usingthe phase from the computed field in one
or more Fresnel plane with the square root of the actual imagedata as the amplitude and propagate
back to the pupil plane. Combining the resulting wavefront error estimate with the smoothed differ-
ence image contributions, defocus, astigmatism, and tip-tilt, we arrive at the new updates for the DM.
These are applied and the process repeats. Since most of these steps can be performed in parallel, the
algorithm is highly appropriate for parallel or GPU architectures.
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Fig. 7: An example of image plane processing. The top row of images are collected at four different
distances from the pupil. A running mean is kept for each plane and is subtracted from the latest
images. This results in an estimate of increased or decreased irradiance, shown in the second row. In
the third row of images, each image is smoothed by a filter thatis more broad for more distant planes.
These images are combined with the first and second moments ofthe irradiance to give the current
wavefront error. An optional final step compares the irradiance computed from the estimate with the
actually measured irradiance, giving a final correction to the wavefront error to be applied to the DM.
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