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ABSTRACT

A critical subsystem of the tomographic AO RTC is the supervisor module. Its role is to feed the challenging
real-time data pipeline with a new reconstructor matrix at a regular rate, computed from a statistical analysis of
the measurements, to optimize the performance of the AO system. This process involves solving a system of linear
equations defined by the covariance matrix of the wave front sensors’ measurements, the size of which may be up
to 90k×90k for the E-ELT’s first light instruments using tomographic AO modules. The computational load for
the solver of this dense symmetric matrix system is quite significant at this scale but can be efficiently handled
using state-of-the-art energy-efficient manycore x86 or accelerator-based architectures, such as KNLs or GPUs,
respectively. As part of the Green Flash project, we develop a supervisor module and demonstrate its portability
by deploying it on each aforementioned hardware system. Finally, we describe different implementations and
their trade-offs in terms of performance and accuracy and show preliminary results on the possible impact of
hierarchically low-rank approximation methods on the overall supervisor module.
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1. INTRODUCTION

In order to achieve the best performance, Extremely Large Telescopes (ELTs) will rely on Adaptive Optics
(AO) systems. Tomographic AO systems are currently developed to exploit the large field of view of this
unprecedented scale of telescopes. Due to the ELTs size, the real-time control systems of these instruments
become a computational challenge and require an efficient design to raise up to this challenge. Most notably, the
supervisor module, which provides optimized tomographic reconstructor to the real-time data pipeline, has to
achieve a throughput of around 100 TFlops. This threshold corresponds to the goal of updating the reconstructor
matrix at a fast enough pace (in the order of a few minutes1) to follow the turbulence evolution and meet the
image quality specifications.

For instance, this module is a part of the co-processing cluster (or soft real-time) of the Standard Platform for
Adaptive optics Real Time Application (SPARTA) interface designed by ESO2,3 . The SPARTA concept supports
tomographic AO systems (such as the Ground Atmospheric Layer Adaptive Corrector for Spectroscopic Imaging
GALACSI) and the supervisor approach, adopted in this platform, relies on the computation of a Minimum Mean
Square Error (MMSE) reconstructor, as described in 4. While it seems to adequately perform with the scale of
the Very Large Telescope Adaptive Optics Facilities (VLT AOF), the requirements and performance obtained
in terms of time-to-solution to produce the new reconstructor is either not addressed or not sufficient to answer
the ELT dimensioning challenge. Additionally, recent work on the Real Time Controller (RTC) dimensioning
of various tomographic AO concepts for the E-ELT5,6) lacks of a proper analysis of how the image quality
specification can map on both hardware and optimized software for the RTC.

In this work, we focus on the Learn and Apply pipeline methodology, which has been extensively tested on the
CANARY demonstrator for various cases of atmospheric AO systems: Ground Layer AO (GLAO), Multi-Object
AO (MOAO) and Laser Tomography AO (LTAO), as reported in 7. We assess the sustained performance of the
supervisor module with state-of-the-art dense linear algebra libraries on latest hardware generations.



Figure 1: supervisor module diagram

Our baseline is the supervisor module depicted in Fig. 1, which proceeds in a the following steps: the
computation of the covariance matrix of the measurements, the Learn & Apply phase and finally, a matrix-
matrix multiplication operation. Although the generation of the covariance matrix is critical because it requires
proper memory access management, this paper only focussed on the computational challenging Learn and Apply
stage as it turns out to be the most time-consuming phase of the supervisor module.

The remainder of the paper is as follows. Section 2 describes the main algorithmic ideas behind the Learn
pipeline and highlights qualitative and performance results. Section 3 presents the Apply pipeline, which rep-
resents the bulk of the computation in the supervisor module, and shows the portability of the implementation
across various hardware architectures. In the same section, preliminary results on the performance impact of
low-rank matrix approximations are also studied. We conclude in Section 4.

2. THE LEARN PIPELINE

The atmosphere can be represented as a set of turbulent layers with their own properties, such as the altitude,
the outer scale and the strength. The objective of the Learn pipeline is to acquire knowledge or “learn” from
the layer distribution of the atmosphere. The information regarding the turbulent layers can be deduced from
the covariance matrix Cmme of actual measurements of the wave front sensors. Theoretical covariance matrices
can be computed with the help of a spatial covariance model function8 noted f in the subsequent sections. This
function requires two sets of parameters. The first one is the set of parameters inherent to the system such as
the telescope diameter, the central obscuration, the number Natural Guide Stars and Laser Guide Stars, the
number of subapertures, the pixel size, the observation wavelength , the read out noise, the width of the laser
beam and the number of targets. The second one is the set of atmospheric parameters. The system parameters
are fixed for a given observing mode, and thus, will not be addressed here. The atmospheric parameters are the
ones of interest and need to be retrieved. This set of parameters is composed, for each turbulence layer, of its
altitude, outer scale and strength.

2.1 Methodology

The Learn pipeline consists in the minimization of the following score function:

S =
∑
i,j

(
Cmme(i, j)− f(x, i, j)

)2
, (1)

where x is the unknown and i, j the position in the matrix. In order to find the best atmospheric parameter
vector x, we use a Levenberg-Marquardt algorithm,9 already tested on the the 4.2m William Herschel Telescope



Algorithm 1 The Levenberg-Marquardt Algorithm.

k = 0; ν = 2; x = x0;
H = J(x)TJ(x); g = J(x)T f(x);
found = ‖g‖∞ ≤ ε1;
µ = τ.max {aii} ;
while (not found) and (k ≤ kmax) do
k = k + 1;
solve((H + µ.Id)hlm = −g);
if hlm ≤ ε2(‖x‖+ ε2) then
found = True;

else
xnew = x+ hlm;
ρ = (S(x)− S(xnew)/(hTlm(µhlm − g)/2);
if ρ > 0 then
x = xnew
H = J(x)TJ(x); g = J(x)T f(x);
found = ‖g‖∞ ≤ ε1
µ = µ.max

{
1/3, 1− (2ρ− 1)3

}
;

ν = 2;
else
µ = µ.ν; ν = 2.ν

end if
end if

end while

(WHT) in La Palma with the CANARY instrument.7 It is an iterative method of type damped Gauss-Newton,
as described in Algorithm 1.

This algorithm is composed of two nested loops. The outer loop where the Hessian H and gradient g of the
score function are computed at the current point. The inner loop determines a descent direction step, by solving
the system:

(H + µId)x = g. (2)

It then accepts or rejects this new vector x according to its score, and eventually, updates the damping parameter
µ. The inner loop finishes when a new vector is accepted.

For a given matrix size, the overall execution time of a single iteration depends highly on the number of
layers. For this reason, the implementation of the Learn pipeline calls the Levenberg-Marquardt algorithm two
times: the first time with a limited number of layers and parameters in order to provide a rough estimate of a
few turbulent layers in a short amount of time, and a second time with up to 40 turbulent layers to refine the
atmospheric profile.

2.2 Hessian and Gradient Computations

The dimensions of H and g are defined by the number of parameters. In this case, it should not exceed 50.
However, the computation of H and g as well as the score function relies on the core function of the covariance
matrix generation function, which may be of dimension up to 100k. In this regard, the execution time dedicated
to solve the inner loop’s system of Eq. (2) is not significant compared to any functions of the matrix generation.
Since the computation of H and g are the most time-consuming parts of this pipeline, it becomes judicious to
optimize these functions.

In the subsequent equations, N is the dimension of the covariance matrix Cmme (symmetric positive-definite)
and nparam is the number of parameters to be retrieved. To ease the notation, the score function Eq. (1) is



written as:

S(x) =

N×N∑
k=1

(
Cmmk − fk(x)

)2
, (3)

where k = i+ j ×N . The Hessian and gradient are respectively defined as:

H = JT · J (4)

g = JT · (Cmm− f(x)). (5)

The above formulations will not be used since the Jacobian J ∈ Rnparam×N2

with N being as large as 100k.
This would require both excessive memory footprint and execution time. It is also noteworthy to mention that
given:

Hi,j =

N2∑
k=1

∂fk
∂xi
· ∂fk
∂xj

(6)

gi =

N2∑
k=1

∂fk
∂xi
· (Cmmk − fk(x)), (7)

this allows to write:

H =

N2∑
k=1

(Jk)T · Jk (8)

g =

N2∑
k=1

(Jk)T · (Cmmk − fk(x)), (9)

where Jk is the line k of the Jacobian. The equations (8) and (9) determine the contribution of each line of
the Jacobian to the Hessian and gradient. Furthermore, it is possible to generate one line of the Jacobian from
a single element of the covariance matrix. Hence, for each element of the matrix, it is possible to compute
its contribution to the Hessian and gradient. This reduces the memory footprint of H ∈ Rnparam×nparam and
g ∈ Rnparam. A convenient feature of the model function is the possibility to independently compute each
element of the covariance matrix. This allows a high degree of parallelism, particularly suited for massively
parallel devices, such as GPUs, since each contribution can be generated by a single GPU thread. In addition,
the model function can return, for a single element, the contribution of one of its layers. This avoids redundant
computations, since an atmospheric parameter only impacts one layer, while the derivatives of the other layers
are null and do not need to be computed.

2.3 Filtering the Covariance Matrix

The covariances between the measures along axis x and the ones along the axis y (XY covariances) have a lower
magnitude than the covariances between measures of a same axis (XX and Y Y covariances), as shown in Fig. 2.
One can assume the XY covariances are not significantly contributing to the accuracy of to the overall Learn
pipeline. In this regard, the Learn pipeline was tested in both cases: with and without using the XY covariances.
As shown by the obtained results, the accuracy of the solution is similar when the XY covariances are not taken
into account, as highlighted in Fig. 3. This filtering process allows to reduce memory footprint as well as a better
execution time since only half of the data is processed while not degrading the solution accuracy.

2.4 Performance Results

The Learn pipeline is tested on two different systems, as described in Tab. 1). The goal is to reduce time to
solution and to assess its strong scalability. The strong scaling consists in running the same problem size with an
increasing number of processing elements. In this case, the program is using exclusively GPUs (the processing
element) for the most time-consuming functions tested here (the computation of the Hessian, gradient and the
score function).



Figure 2: The Cmme covariance matrix: the darker the blocks, the lower the magnitude of the covariance between the
measures along the x axis of a sensor and the y axis of another sensor.
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Figure 3: Atmospheric profiles. In black the target, in blue and red the output of the Learn pipeline with and without
the XY covariances. The system parameters are the following, telescope diameter=40m, 9 wave front sensors including 6
laser guided stars with 80 subapertures along the diameter, with a total of 86688 measurements.
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Figure 4: Strong scaling of the computation of the score (left) and the Hessian and gradient (right).

For the strong scaling, we consider a system at the E-ELT scale with a 40m diameter telescope and 9
wave front sensors including 6 laser guided stars with 80 subapertures along the diameter, for a total of 86688
measurements. The strong scaling graphs in Fig. 4 are built with the average execution time of single iteration,
over all the iterations of the execution.

The efficiency remains above the 90%, except for the score function with 8 P100 and 43 parameters. In
the latter case, more investigation is needed to better understand this unexpected behavior, since it requires
the same amount of communications as the 10 parameters case with a more challenging computation load. In
fact, these two functions contain a reduce operation (the sums in the equations (3),(8) and (9)), that may limit
their scalability, although there are not enough computational resources to trigger the efficiency drop that would
highlight this limitation.

The full execution of the Learn pipeline is currently achieved in about 300 seconds for the 86k case with
the 8 NVIDIA P100 DGX-1 system against 1300 seconds with 4 NVIDIA K80 system (8 GPUs total), as
depicted in Fig. 5. An execution time speedup of 4 is obtained between two eight GPUs systems that are one
generation apart (while there is a factor of five between their peak performance). Reducing further the Learn
computational time to less than a minute is a challenge that needs to be explored more densely-occupied systems
or with distributed-memory systems.

Table 1: Hardware Specifications for the Learn Phase.

Name System Peak performance

hippo6 Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz + 4 K80 7.9 TFlops

Nirvana Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz + 8 P100 GPUs (DGX-1) 43.8 TFlops
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Figure 5: Execution time of the Levenberg-Marquardt algorithm.

3. THE APPLY PIPELINE

Once the Learn pipeline has been successfully executed, the covariance matrices of the wave front sensors mea-
surements can be computed for the current atmosphere, knowing their observation’s directions. This includes
virtual sensors, and in particular, the one oriented toward the object of interest named the truth sensor. The
Apply pipeline aims to provide a projector matrix (R′) between the basis of the actual measurements and the one
of the truth sensor’s measurements. This projector matrix is obtained from the covariance matrix of the measure-
ments of the actual sensors with themselves (Cmm) and the covariance matrix of the truth sensor measurements
and those of the actual sensors (Ctm) using the following equation:

R′ = Ctm× Cmm−1 (10)

We do not calculate the explicit inverse of the matrix, as this would require extra operations. Instead, we take
advantage of the covariance matrix structure (symmetric positive-definite) and solve instead the following linear
system of equations:

R′ × Cmm = Ctm, (11)

with R′ containing the unknowns.

3.1 The Chameleon and StarPU Software Libraries

The state-of-the-art Linear Algebra PACKage (LAPACK)10 library provides routines to solve dense systems of
the form Ax = B, where A is symmetric positive-definite and B is the right hand side, based on the Cholesky
decomposition (named DPOSV ). However, our actual system is rather of the form xA = B.

Therefore, we have to break down the DPOSV routine into several subsequent calls to be able to solve
xA = B, including the Cholesky factorization followed by a backward and a forward substitution, using the
proper side parameters.

However, LAPACK has shown parallel performance limitations in the context of the manycore era mostly
due to its bulk synchronous programming model. Indeed, LAPACK alternates computational memory-bound
and compute-bound phases, using highly efficient multithreaded BLAS,11 which does not allow to seamlessly
extract performance from the underlying manycore hardware.12 Therefore, we use the Chameleon library, a



task-based dense linear algebra library that is part of the Matrix Over Runtime System (MORSE).13 The main
objective of this project is to provide linear algebra methods for large scale multicore systems with hardware
accelerators, such as x86 manycore or GPUs, and eventually aims for the exascale systems. As its name suggests,
a task-based programming model expresses a sequential program as a succession of tasks and translates it into
a directed acyclic graph, where nodes represent tasks and edges define the data dependencies among them. A
dynamic runtime system StarPU14 is then employed to efficiently schedule tasks across computational units
(CPUs and/or GPUs, shared or distributed-memory environment), while (1) making sure the data dependencies
are not violated and (2) hiding the overhead of data transfers.

Indeed, when it comes to heterogeneous systems, a given task can have several implementations to target
different components of the system (CPU and/or GPU). The various tasks are then executed on the different
part of the system, in parallel, according to the availability of the computational resources. In order to take
advantage of this fine-grained programming model, the task scheduling and data movement need to be taken
into consideration in a systematic way, especially when dealing with GPUs remote memory. This is where the
runtime system approach allows applications’ developers to experience productivity.

3.2 Performance Results

The Chameleon library performs dense linear algebra matrix computations and relies on StarPU for task schedul-
ing across various shared/distributed memory and homogeneous/heterogeneous systems. The Apply pipeline has
been tested on various systems, as described in Table 2.

Table 2: Hardware Specifications for the Apply Phase.

Name system Peak performance

Shihab two sockets eighteen-cores Intel Haswell E5-2699 v3 @ 2.30GHz 1,3TFlops

Condor one socket 64-cores Intel Xeon-Phi(TM) CPU7210 @ 1,3GHz (KNL) 2,7TFlops

Nirvana Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz + 8 P100 GPUs (DGX-1) 43.8TFlops

In our tests, the performance is estimated both in terms of achieved Flops/s and time to solution. We
tested various matrix sizes, corresponding to various AO systems dimensioning, up to a typical E-ELT scale
tomographic AO system with its 100k × 100k measurements covariance matrix.
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Figure 6: Best performance of the Apply pipeline on the Haswell system achieves about 70% of the peak performance
with a maximum of approximately 1 TFlops/s and solves a 100k case in 600 seconds.

The peak performance speedup factor between condor, the single Intel KNL system and nirvana the 8xP100
GPUs system is about 16, as described in Tab. 2. The obtained performance ratio between the two systems is
16, as shown in Figs. 7 and 8). This also demonstrates the high portability of the code, which is able to run on
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Figure 7: Best performance of the Apply pipeline on the Intel Xeon-Phi system achieves about 50% of the peak
performance, with a maximum of 1.39 TFlops/s and solves a 100k case in 400 seconds.
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Figure 8: Best performance of the Apply pipeline on the DGX-1 (i.e., 8 P100 GPUs) achieves about 50% of the peak
performance with a maximum of 21.69 TFlops/s, and solves a 100k case in 26 seconds.

Xeon Phi and GPU with similar efficiency, without changing the actual code. There are still lots of rooms for
improvements, in particular, from a runtime perspective to further reduce date motion between GPUs.

In terms of time-to-solution, our benchmark shows that with the state-of-the-art dense linear algebra libraries
Chameleon associated with the dynamic runtime system StarPU using leading edge densely-occupied GPU server
(i.e., DGX-1), the tomographic reconstructor for an AO system of the size of the E-ELT first light instrument can
be computed in less than 30 seconds. This is compliant with the initial requirement of a few minutes discussed
in 1 for the overall Learn & Apply pipelines.

3.3 Pushing the Limits with Low-Rank Matrix Approximations

A hierarchical matrix (H-matrix15,16) is a storage format for compressible dense matrices, which also permits
full matrix arithmetic. H-matrices are based on an hierarchical partitioning of the index sets for the rows and
columns of the dense matrix in such a way that thereby constructed matrix subblocks may be identified as
compressible. For those subblocks low-rank approximations are computed. For all non-compressible blocks of
the matrix, the original dense representation is used.

The rank of the low-rank approximation is either predefined or adaptively chosen based on a given accuracy.
Furthermore, low-rank blocks are represented in the factored form M = A ·BT with M ∈ Rn×m, A ∈ Rn×k, B ∈
Rm×k and k being the rank of the low-rank matrix.

Covariance matrices generated here (Cmm,Ctm) are representable in the H-matrix format and the com-
pression rate (defined as memory(compressed)/memory(dense)) of these matrices, assessed with the library



HLIBpro,17 can be up to 40%.

This figure was obtained by first assessing the accuracy required for the low-rank approximation of the
covariances matrices (Cmm,Ctm) so that the reconstructor is accurate enough for the AO system (tested on an
end to end simulation tool: compass) then tuning the compression of the covariances matrices, testing several
different orderings for the rows and columns and tuning compression parameters such as the minimal block size.

But problems arise during H-matrix factorization and solving the system (11). The rank of the low-rank
subblocks increases (e.g., in (R′)) such that the memory consumption is equal to the dense case. However, when
applying the H-matrix compression directly to R′ computed in dense format, compression is observable.

Investigating further how this formalism could be applied to integrate the supervisor module is our short
term objective, since it may further reduce the time to generate the covariance matrices.

4. CONCLUSION

Even though the Learn pipeline could be further optimized and the task-based implementation of the Apply
pipeline improved, the performance results presented in this paper are still very encouraging. It demonstrates
that an efficient supervisor strategy for tomographic AO can be implemented on leading edge hardware and
software technologies, with a degree of portability and optimized performance through the use of standard linear
algebra and runtime system libraries. The time-to-solution for the full Learn & Apply pipelines, targeting a
tomographic AO system instrument with up to 10 high order WFS on the E-ELT, lies in the range of a few
minutes on COTS multi-GPU platforms. This represents a major milestone moving forward, since it is already
compatible with rough estimates of the requirements in terms of reconstructor update rates, in order to follow
the turbulence evolution structure during a long exposure. If the science requires performance to be pushed
further and if a tomographic reconstructor is to be provided every minutes, with this implementation of the
Learn & Apply methodology, one would require several multi-GPU servers, with possible performance loss due
to inter-server communication. Also, from a first assessment with the H-Matrix library HLIBpro, the Apply
pipeline structure does not seems to fit well with state-of-the-art H-Matrix frameworks. However, leveraging the
compression of the tomographic reconstructor using H-Matrix formalism may have significant impact in reducing
the latency of the real time data pipeline.
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