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ABSTRACT   

Solar observations with large telescopes have to face numerous challenges for its implementation. Adapting the current 

reconstructor systems of adaptive optics, which were developed for night observations to remove the atmospheric 

turbulence, is one of them. Neural networks were proved as a great solution in different fields, as image processing or in 

tomographic reconstruction. In this paper, possible uses of neural networks in solar adaptive optics will be explored, 

providing some early results of their application to different fields of adaptive optics.  
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1. INTRODUCTION  

10-meter class telescopes have been widely used during last decades to observe different phenomena that happens 

millions of kilometers away from our planet. Traditionally, these telescopes were used during night observations, and 

have been growing until achieving sizes of several tens of meters, like the European Extremely Large Telescope (E-ELT) 

[1]. However, the observation of the sun, especially in the optic spectrum, have gained a lot of interest during the last 

years [2]. The development of the European Solar Telescope (EST) [3], a 4 meters solar telescope has created new 

challenges regarding not only the engineering, but the control systems to handle this new generation of solar telescopes 

[4]. 

Adaptive Optics (AO) has been widely used in night observations, and it also provides great improvements when 

observing the sun with large telescopes [5]. The use of AO, implies the necessity of a reconstruction system to 

compensate the aberrations introduced by the atmosphere [6]. Machine learning techniques as SOM [7] or MARS [8] 

have been used in nocturnal observations with success [9], but the use of neural networks [10] has been proved to be a 

better solution [11]. 

Artificial Neural Networks (ANNs) have been successfully applied to several fields during last years, like image 

classification, speech recognition or language processing [12]–[15]. Their success on nocturnal observations [16], makes 

them great candidates to be applied also in solar observation. In the present paper, different proposals about the use of 

ANNs in solar telescopes will be detailed, such as their use in the calculation of the slopes, or their utilization as 

tomographic reconstructor. 

Section 2, consists in a short introduction about solar adaptive optics and how a system can be simulated. In Section 3, 

ANNs will be detailed, and examples of how they work will be given. Section 4 is an explanation of how solar AO and 

neural networks could be combined. The last section will be the conclusions of the work and future lines.  
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2. SOLAR ADAPTIVE OPTICS 

2.1 Adaptive Optics Systems 

AO is one of the most common techniques to compensate the influence of the turbulence in stellar observations, during 

both day and night. It helps to improve the quality of the image received by ground-based telescopes through the use of 

real-time control systems. Typically, these systems are composed by a deformable mirror, a Wavefront Sensor (WFS) 

and a control system that includes a wavefront reconstructor [17]. A summary of the structure of an AO system can be 

observed in Figure 1. 

 

Figure 1: Adaptive Optics System 

 

The Shack-Hartmann Wave-Front Sensor (SH-WFS) [18] is frequently used in AO systems. It is composed by a grid of 

lenses with the same focal length. The sensor has the ability to characterize the aberration of an incoming wavefront by 

dividing it into discrete sub-pupils. Once is divided, the deviation from the focal spot can be measured, and a vector of 

tilts which characterizes the aberration could be created. 

For the adaptive mirror, it is common to use a deformable mirror that corrects phase aberrations. This can be achieved by 

changing the shape of the mirror with the correct wavefront shape. Usually, the mirror surface is deformed by several 

actuators located at the back of a thin reflecting surface. 

In the case of the reconstruction and control system, it is possible to employ several different techniques. The most 

commonly used reconstructor is based on a matrix vector multiplication operation, with the control matrix being defined 

by either least squares [19] or minimum variance techniques [20]. During the last years, novelty methods have been 

applied with success, like Learn and Apply [21], or the use of Artificial Neural Network as tomographic reconstructor 

[11]. 

2.2 Difference between night and day observations 

In its basic design, solar AO systems are quite similar to night-time AO systems. However, there are some significant 

differences between night and day observations. The atmospheric turbulence is the cause of the different aberrations 

produced in ground-based telescopes. In day time observations, due to heating of the ground produced by direct sunlight, 



 

 
 

 

 

 

the ground-layer of the turbulence is much stronger than night observations [22]. Also, this heating make that Fried 

parameters fluctuates significantly on short time scales (seconds) and often drops to values of just a few centimeters [17]. 

Another big challenge in day observations, is the development of suitable wavefront sensors. Traditional WFS are not 

adequate since the Sun itself is used as reference, so a correlation SH-WFS is used instead. Laser guide stars are not 

useful when observing the sun, since it will be needed to be extremely bright lasers, making it a very expensive option.  

2.3 Durham AO Simulator Platform (DASP) 

DASP is an Open-Source simulator for adaptive optics. It was developed at the University of Durham and is available for 

download in [23]. It performs simulations from night and solar observations, providing information regarding the 

different WFS, centroiding, slopes, deformable mirror shapes, etc.  

The simulator has a console terminal and a graphical interface to configure the adaptive optics system. It allows the 

modification of the different parameters that conform the turbulence profile (number and height of the layers, Fried 

parameter, wind speed, etc.), and the intensity of the different reference stars. To check the quality of the simulation, 

DASP also provides images in real-time from the performed simulations as it is shown in Figure 2(b), so researchers can 

check that simulations are being implemented correctly. 

          

(a)                                                                                                        (b) 

Figure 2: (a) Picture from a portion of the sun. (b) Solar observation in DASP 

 

3. CONVOLUTIONAL NEURAL NETWORKS 

Convolutional Neural Networks (CNNs) have been widely used processing images during the last years [24]. This 

method of Artificial Intelligence, has the ability to extract information from images, after a process of training the neural 

network with large sets of images. 

3.1 Architecture of Convolutional Neural Networks 

The composition of CNNs is structured in layers. These layers are composed by neurons, which perform an operation 

over the input. There are different types of layers, which are usually divided in two sections, as it is shown in Figure 3. In 

the feature learning side, the most common type is the convolutional layer, which is composed by different filters that are 

convoluted along the full entrance. After this operation, an activation function like the Rectified Linear Unit (ReLU) [25] 

is applied, to help during the training process [26]. The last step in a typical group of layers, is pooling, which select the 

most significant value (maximum, median or average), in a certain group of pixels. By doing this, it is possible to reduce 



 

 
 

 

 

 

the size of an image, and extract the most significant features. Nesting several of these blocks provide a better extraction 

of relevant information. 

 

Figure 3: Example of an image detector using convolutional neural network 

 

After the convolutional stage of the neural network, the different features are flattened and used as input to a Multi-Layer 

Perceptron (MLP). A MLP is composed of several fully connected layers, where all the neurons from one layer, are 

connected to all the neurons in the previous and the next layer. There is also an output layer that provides the expected 

output, which can be a category, real numbers, etc.  

3.2 Training 

One of the keys of neural networks is their capacity to learn and extract characteristics from sets of data. This process is 

known as training, and it allows the ANN not only to work with known data, but also to generalize with unknown data 

[27]. 

In a more practical definition, the process of training consists of calculating the optimal values of filters and weights of 

all neurons. This is an iterative process which requires sets of known data to compute these values. The first step is to 

randomly initialize the weights of all the neurons. Although it seems quite arbitrary, it has been proved that specific 

random initialization helps in the learning process [28]. Once the values are initialized, the network is fed with known 

sets of inputs and outputs. The result provided by the neural network is compared with the expected output, obtaining 

certain error. This error has to be minimized by using a gradient descent algorithm, and is going to be backpropagated 

through the different layers of the neural network [29]. After the propagation of the error, the values of the filters and the 

weights are updated. The previous steps are repeated until the complete dataset had trained the network. A summary of 

the training process it is shown in Figure 4 



 

 
 

 

 

 

 

Figure 4: Neural network training 

3.3 Neural networks in AO  

Regarding night observations, there are already some experiments that mixed neural networks and AO. One of the most 

successful is the Complex Atmospheric Reconstructor based on Machine lEarNing (CARMEN) [30]. This reconstructor 

uses neural network to create a tomographic profile of the atmospheric turbulence. It uses a MLP trained with a single 

turbulence layer and fixed r0, but with variable height. This neural network has obtained great results during simulation 

compared to other reconstructors based on least squares methods or covariance matrixes [31]. CARMEN has also been 

tested on-sky, on a Nasmyth platform of the 4.2 m William Herschel Telescope, one of the Isaac Newton Group of 

Telescopes of the Observatorio del Roque de los Muchachos, La Palma, Canary Islands, Spain. During the tests, the 

reconstructor showed great performance, similar to the obtained during the simulation stage [16]. 

Another interesting idea of applying neural networks in adaptive optics, have been shown with the Adaptive Optics 

Lucky Imager (AOLI) [32]. This instrument uses a Tomographic Pupil Image Wave-Front Sensor (TPI-WFS) instead of 

a traditional SH-WFS, and provides two pictures, re-imaged at 2 mm from the pupil, as it can be seen in Figure 5. 

 

Figure 5: Tomographic Pupil Image Wave-Front Sensor 

 



 

 
 

 

 

 

These two images, are used as inputs to the neural network, along with the polynomial Zernikes as outputs, which allows 

to reconstruct the aberrated wavefront. Using thousands of simulated images with variable r0, a CNN is trained. This 

neural network obtained a much better reconstruction than the traditional methods, especially for high values of r0 [33]. 

Also, the use of convolutional neural networks has a great potential solving the anisoplanatism issue with the correlation 

SH-WFS. Working on extended and low-contrast objects the Field Of View (FOV) has to be large enough to contain 

structure for the correlation algorithm to work robustly (~8-10 arcsec). With such FOV, the anisoplanatism affects the 

measurements of the correlating SH-WFS decreasing the sensitivity to wavefront distortions introduced at large heights 

above the telescope aperture [4]. CNNs have the potential to perform reconstruction using as reference images with 

smaller FOVs, alleviating this effect and increasing the performance. 

 

4. PRELIMINARY RESULTS 

After introducing different concepts regarding neural networks and solar adaptive optics, the proposed experiment will 

be detailed. The use of neural networks for solar observations in this work has two different purposes; first, the usage of 

solar images obtained from different WFS to estimate the slopes of the different sub-apertures in a SH-WFS. Also, to 

achieve the reconstruction of the turbulence profile, and compensate the aberration introduced by the atmosphere 

modifying a deformable mirror. 

Both experiments share similar techniques regarding the training process. The starting point is a picture of a portion of 

the sun, as it is shown in Figure 2(a). This image is split in portions of 144x144 pixels and those pieces are used as inputs 

for the simulator. With DASP, different turbulences profiles are created, using one single turbulence layer with variable 

height, as it was done in CARMEN [30], and applied to the different portions of the image. After this process, it is 

possible to obtain inputs images as in Figure 2(b), which will feed the input of the neural network. 

Thousands of images are generated, which are used to train the CNN. Also, to validate the result, a different set is 

created, using different turbulence profiles, which the goal to avoid overfitting and overtraining the neural network to the 

training set [34]. 

4.1 Slopes 

To calculate the slopes of the different SH-WFS subapertures, DASP provide the perfect slopes from each subaperture. 

Using the input from Figure 2(b) and the perfect slopes as outputs, it is possible to train a neural network. Once is trained 

the CNN can predict the slopes using only the information presented in the image.  

Different experiments have been conducted, obtaining and error of about 25% compared to the perfect value, when the 

outputs are normalized between [-1, 1]. Since the neural network, DASP and other techniques are still in early stages of 

their development, it has not been possible to compare different methods to compute the slopes with the neural network. 

4.2  Deformable Mirror 

In this scenario, the goal is to completely remove the atmospheric turbulence by using a tomographic reconstructor and a 

deformable mirror. The neural network is trained using the same input than the previous case but using the values of the 

actuators from the deformable mirror as output.  

In the validation process, an absolute error of about 20% compared to the ideal value was obtained. This error is obtained 

when the values of the actuators are normalized between [-1, 1], and compared directly. In the future could be interesting 

to compute the error in optical terms, like the wavefront error, to compare the differences between the ideal and the 

predicted wavefront.  

5. CONCLUSIONS AND FUTURE LINES 

This paper has given some insights into solar AO and how CNNs works. Some examples of how AO have been 

combined with neural networks have been provided, showing how the application of neural networks to solar 

observations is a viable and promising option for their use in the future solar telescopes, especially in the future EST. 

Also, some results have shown, proving that there are different fields in solar AO where CNNs can be applied 

successfully. 



 

 
 

 

 

 

However, it is important to remark that the project is in a very early stage, and it is needed to test the different 

experiments in a much deeper way. But there are lots of different ideas to improve the performance of CNNs that could 

be applied to solar AO, like the use of recurrent neural networks [35], on-line training [36], [37] or even apply the notion 

of classification when computing the outputs. For last, it is interesting to keep in mind that in astronomy, not only AO 

could be benefited for the usage of neural networks since, for instance, the detection of exoplanets [38], [39] has already 

done. 
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