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ABSTRACT

In this paper we present two novel algorithms for wavefront reconstruction from pyramid-type wavefront sensor
data. Assuming a computationally very challenging setting corresponding to the extreme adaptive optics on
the European Extremely Large Telescope, we present the results of the performed end-to-end simulations and
compare the achieved AO correction quality (in terms of the Long-Exposure Strehl ratio) to other methods like
MVM and P-CuReD. Also, we provide a comparison in terms of applicability and computational complexity and
closed loop performance, of our novel algorithms to other methods existing for this type of sensor.

Keywords: Pyramid wavefront sensor, wavefront reconstruction algorithms

1. INTRODUCTION

In order to image the celestial objects with resolution near the diffraction limit, ELTs will rely on a large number
of correcting elements, which make fast and accurate wavefront reconstruction very challenging with respect to
the related computational load. For instance, in the XAO system designed for the EPICS instrument on the
E-ELT, more than 25.000 actuators need to be controlled with the frame rate of about 3 kHz. The conventional
algorithm, the matrix vector multiplication (MVM), is associated with a serious computational load which
makes it hardly feasible for the high order real time AO correction. Therefore, the development of alternative
mathematical algorithms, which would be faster than MVM and provide the same quality of reconstruction, is
of crucial importance.

In recent years, the authors with colleagues have developed several novel algorithms based on the mathe-
matical analysis of the forward models of the P-WFS. The gained experience is summarized in.1 There one can
find a comprehensive description of the P-WFS forward models for all modulation scenarios. Also, it contains
four developed algorithms, which reach similar or even higher correction quality than the MVM method. As a
quality measure the Long-Exposure (LE) Strehl ratio was used, which is evaluated as the average on-axis Strehl
ratio for all performed time steps. At the same time, the developed algorithms are all significantly more efficient
in terms of speed.

In this paper we present two novel algorithms for wavefront reconstruction from pyramid-type WFS data.
Our methods are flexible and rather general in the sense that they are applicable to both pyramid and roof type
sensors, used both with and without modulation. The paper is organized as follows. In Section 2 we present
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an overview of the mathematical forward models of the pyramid sensor data and their approximations. The
Fourier domain representation of the considered linearized approximate forward models, derived in Section 3,
bring the reader to Section 4, where two novel algorithms are presented. The closed loop performance of our
algorithms is compared to the MVM and the P-CuReD results in Section 5. The computational complexity of our
methods is analyzed in Section 6. There we also compare our algorithms to other existing methods for P-WFS
data. We compare their closed loop performance and computational complexities, analyze their advantages and
weaknesses.

2. PYRAMID/ROOF WFS FORWARD MODELS

The full Fourier optics based forward model of the non-modulated P-WFS was first derived in.2 According to the
theoretical model, the sensor measures a combination of one-dimensional and two-dimensional Hilbert transforms
of the non-linear functions of the phase. For the modulated pyramid sensor, the full theoretical model becomes
even more complicated. A comprehensive description of the full as well as approximate forward models of pyramid
and roof sensors for all modulation scenarios can be found in.1 Clearly, such forward models are mathematically
difficult to invert. However, several assumptions allow us to simplify the forward model significantly. In the
remainder of the section we will focus on these assumptions and the corresponding approximate models which
led us to the development of the presented algorithms. We use the notations introduced in.1,3

2.1 Roof WFS approximation

The theoretical model of the P-WFS becomes simpler when instead of the four-sided pyramidal prism one as-
sumes two orthogonally placed two-sided roof prisms.4–6 Thanks to the physical decoupling of the prisms and
their orthogonal placement with respect to each other, the two signal sets Sx and Sy are independent and contain
information about the phase φ only in x- and only in y- direction correspondingly. Due to the symmetry, we
consider Sx measurements only.

Theorem 1. Under the roof sensor assumption, the P-WFS data Sn,l,cx is approximated as

S{n,l,c}x (x, y) =

+B(y)∫
−B(y)

sin [φ(x′, y)− φ(x, y)] k{n,l,c}(x
′ − x)

π(x− x′)
dx′, (1)

where the functions k{n,l,c} are defined as kn(x) = 1, kl(x) = sinc(αλ(x)), kc(x) = J0(αλ(x)). Here the
superscripts {n, l, c} denote the cases of no modulation applied, a linear and a circular modulation of amplitude
α = bλ

D with a positive integer b; {−B(y),+B(y)} denote the boundaries of the pupil images for a fixed y,
αλ = 2πα

λ , and J0 denotes the zero-order Bessel function of the first kind.

Proof. See.1,4, 5

2.2 Closed loop approximation

An additional assumption of small wavefront distortions φ� 1, as expected in the closed loop, allows to linearize
the models of the pyramid sensor measurements.

Theorem 2. Under the roof sensor and closed loop assumptions, the linearized pyramid sensor data is given
as

Sx(x, y) =
1

π

B(y)∫
−B(y)

[φ(x′, y)− φ(x, y)]k{n,l,c}(x
′ − x)

x− x′
dx′. (2)

Proof. See.1,4, 5



2.3 Infinite telescope approximation

Assuming an infinite telescope size B(y)→∞, one can simplify the forward models further.

Theorem 3. Under the roof sensor, closed loop, and infinite telescope size assumptions, the P-WFS data
is given as

S{n,l,c}x (x, y) =

(
φ(·, y) ∗

k{n,l,c}(·)
π·

)
(x, y), (3)

where ∗ denotes the convolution operator.

Proof. See.1,4, 5

2.4 Subaperture discretization

So far we have considered the continuous model of the data and neglected the finite sampling of the sensor.
What we measure in practice is the averaged data values over the subapertures. Following the approach in,4 we

consider the sensor data S
{n,l,c}
x as discrete functions evaluated in the (discrete) middle points {x̄, ȳ} of WFS

subapertures.

We obtain the discrete sensor data S̄
{n,l,c}
x at the discrete space variable x̄ in the following two steps. In the

first step, we average the continuous data S
{n,l,c}
x over the subapertures, which is mathematically represented

by a convolution of S
{n,l,c}
x with a characteristic function Π of the interval [−1/2, 1/2], namely

S̄{n,l,c}x (x) =

(
S{n,l,c}x (·) ∗ 1

d
Π
( ·
d

))
(x) (4)

=
1

d

+∞∫
−∞

S{n,l,c}x (x′)Π

(
x− x′

d

)
dx′

=
1

d

x+d/2∫
x−d/2

S{n,l,c}x (x′)dx′.

In the second step, from the averaged data values S̄
{n,l,c}
x (x) given at continuous space variable x we pick a set

of discrete values {Ŝ{n,l,c}x } = {S̄{n,l,c}x (x̄)} in the middle points x̄ of the subapertures. Mathematically, this step

is represented by a multiplication of the averaged data S̄
{n,l,c}
x (x) with the so called sampling function Td,

Ŝ{n,l,c}x (x) = S̄{n,l,c}x (x) · Td(x). (5)

The sampling function Td, also known as the Dirac comb, from the mathematical point of view is a distribution,
or a generalized function, and is defined as an infinite sum of the shifted delta distributions,

Td(x) :=

+∞∑
k=−∞

δ(x− kd) =
1

d
T
(x
d

)
. (6)

Therefore, by a multiplication of the averaged data S̄
{n,l,c}
x (x) with Td(x), we pick a discrete set of values of

S̄
{n,l,c}
x (x̄) in a discrete set of points {x̄} = {x|xd ∈ Z} representing the middle points of the sensor subapertures.

3. FOURIER DOMAIN REPRESENTATION

Now we can perform the Fourier transform on the (discretized) sensor data Ŝ
{n,l,c}
x (x). Note that due to the

finite sampling (i.e., subaperture discretization) of the WFS, the spectrum of the measured sensor data contains
only certain (discrete) frequencies ū sampled in the interval [−ucut, ucut] with a sampling size ustep := 1/D,
determined by the telescope diameter D. The cut-off frequency ucut is determined by the sensor subaperture
size d as ucut = 1/(2d). In the modulated case, let the parameter umod > 0 be defined as umod = α/λ = b/D,
where b is a positive integer. The parameter umod defines the frequency at which the transition between the two
regimes (slope versus phase mode) of the pyramid-type sensor happens.



3.1 Spectrum of continuous data

Theorem 4. For each of the modulation scenarios, the spectrum of the continuous sensor data is given as a
product of the wavefront spectrum with a corresponding filter function gn,l,cx ,

(FS{n,l,c}x )(u) = (Fφ)(u) · g{n,l,c}(u), (7)

where the Fourier domain filters g{n,l,c}, corresponding to the sensor without modulation, with linear and circular
modulation of radius α respectively, are given as

gn(u) = i sgn(u),∀u ∈ [−ucut, ucut], (8)

gl(u) =

{
i sgn(u), |u| > umod,
iu/umod, |u| ≤ umod,

(9)

gc(u) =

{
i sgn(u), |u| > umod,
2i
π arcsin(u/umod), |u| ≤ umod.

(10)

Proof. The proof consists in applying the Fourier convolution theorem to Eq. (3). For details we refer to.1,4

�

3.2 Spectrum of averaged continuous data

Theorem 5. For each of the modulation scenarios, the spectrum of the averaged continuous sensor data S
{n,l,c}
x

is given as the point-wise product

(F S̄{n,l,c}x )(u) = (Fφ)(u) · h{n,l,c}(u), (11)

of the wavefront spectrum, evaluated at a discrete set of frequencies u, with the corresponding discrete filter
function hn,l,c given as

h{n,l,c}(ū) = g{n,l,c}(u) · sinc(du). (12)

Proof. The spectrum of the averaged continuous sensor data S̄
{n,l,c}
x is obtained from (4) as

(F S̄{n,l,c}x )(u) =

(
F
(
S{n,l,c}x (·) ∗ 1

d
Π
( ·
d

))
(x)

)
(u)

=
(
FS{n,l,c}x

)
(u) ·

(
F 1

d
Π
( ·
d

))
(u)

=
(
FS{n,l,c}x

)
(u) · sinc(du),

Using (7), we obtain the statement of the Theorem. �

3.3 Spectrum of discrete data

Theorem 6. For any modulation scenario, the spectrum of the discretized pyramid sensor data Ŝ
{n,l,c}
x is a

convolution of the spectrum of the averaged continuous sensor data S̄
{n,l,c}
x with the sampling function

(F Ŝ{n,l,c}x )(u) =
(
F S̄{n,l,c}x (·) ∗ T (d·)

)
(u). (13)



Proof. Applying the Fourier convolution theorem to (5) and using the fact that the Fourier transform of the
sampling function Td is again a sampling function,

(FTd(·)) (u) =
1

d
T 1

d
(u) = T (du).

We obtain

(F Ŝ{n,l,c}x )(u) =
(
F
[
S̄{n,l,c}x (·) · Td(·)

])
(u)

=
((
F S̄{n,l,c}x

)
(·) ∗ (FTd)(·)

)
(u)

=
((
F S̄{n,l,c}x

)
(·) ∗ T (d·)

)
(u).

Note that the convolution of F S̄{n,l,c}x with the sampling function T (du) simply denotes that discrete values of

F S̄{n,l,c}x corresponding to subaperture centers are assigned to the discrete spectrum (F Ŝ{n,l,c}x ). �

The Fourier domain filters h{n,l,c} for different modulation scenarios with modulations 0 and 12λ/D are
illustrated in Figure 1.
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Figure 1: (a) Fourier domain filters hn,l,c. (b) Inverse Fourier domain filters h−1n,l,c for modulation 12λ/D.

4. TWO NOVEL ALGORITHMS

Our PFTR/CLIF method is based on the Fourier domain relation between the spectra of the discrete sensor data
and the wavefront described in the previous section. The reconstruction consists essentially in the application
of the corresponding inverse Fourier domain filter. This inversion procedure can be performed in two different
ways — either as a multiplication on the Fourier domain, or as a convolution on the spatial domain. The two
presented algorithms correspond to these two different implementations of the same reconstruction idea. Though
mathematically the algorithms are equivalent, they have different computational complexities, which is why it
makes sense to distinguish them.

4.1 Pyramid Fourier Transform Reconstructor

Theorem 7. For any modulation scenario, the wavefront can be reconstructed from the discrete sensor data

Ŝ
{n,l,c}
x as

φrecx (x) =
(
F−1

[(
F Ŝ{n,l,c}x

)
(u) · h−1{n,l,c}(u)

])
(x), (14)



where the inverse Fourier domain filters h−1{n,l,c}, corresponding to the sensor without, with linear and circular

modulation of radius α respectively, are defined on ∀u ∈ [−ucut, 0) ∪ (0, ucut] as

h−1{n,l,c} = g−1{n,l,c}(ū) · sinc−1(dū) (15)

with the filter functions g−1{n,l,c} given by

g−1n (u) = −i sgn(u), (16)

g−1l (u) =

{
−i sgn(u), |u| > umod,
−iumod/u, |u| ≤ umod,

(17)

g−1c (u) =

{
−i sgn(u), |u| > umod,
− iπ

2 arcsin(u/umod)
, |u| ≤ umod (18)

and containing singularities at u = 0,

lim
u→0−

g−1n (u) = −i, lim
u→0+

g−1n (u) = i,

lim
u→0−

g−1l (u) =∞, lim
u→0+

g−1l (u) = −∞,

lim
u→0−

g−1c (u) =∞, lim
u→0+

g−1c (u) = −∞.

Proof. Using the results in Theorems 5 and 6, and multiplying (11) from both sides with the corresponding
discretized inverse Fourier domain filter h−1{n,l,c}, we obtain the wavefront spectrum in the form

(Fφ)(u) =
(
F S̄{n,l,c}x

)
(u) · h−1{n,l,c}(u). (19)

Then, applying the inverse Fourier transform, we obtain the reconstruction formula

φrecx (x) = (F−1(Fφ))(x). (20)

The expressions for the filter functions g−1{n,l,c} and h−1{n,l,c} are obtained from Theorems 5 and 6. �

Figure 1 illustrates the inverse filters h−1{n,l,c} for different modulation scenarios with modulations 0 and

12λ/D.

Based on Theorem 7, the PFTR algorithm consists in the following five steps:

Algorithm 1: PFTR.

1. Computation of the 1D inverse Fourier domain filter h−1{n,l,c}(u) according to (15). This step has to be

performed only once for the chosen AO system and can be pre-computed before the AO loop starts.

2. Computation of the spectrum {(FSx)(u), (FSy)(u)} of the sensor data. The 1D Fourier transform (FT) is
applied row-wise to the sensor data Sx and column-wise to data Sy.

3. Multiplication of the sensor data spectrum {(FSx)(u), (FSy)(u)} with the inverse Fourier domain filter
h−1{n,l,c}(u). The multiplication is performed row-wise for the spectrum of data Sx and column-wise for the

spectrum of data Sy.

4. Computation of the Inverse Fourier Transform (IFT) of the result.

5. Averaging of the two wavefronts reconstructed from Sx and Sy sensor data.
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Figure 2: Numerically evaluated space domain kernels p{n,l,c} for modulation 4λ/D.

The difference of our PFTR algorithm compared to the FTR algorithm presented in7 is in the filter functions
used. In7 the authors assumed the pyramid sensor with a large amount of modulation applied. Since in this
regime the pyramid sensor acts similar to the Shack-Hartmann sensor, i.e., measures the slopes of the wavefront,
the authors in7 simply used the Fourier domain filter derived for the Shack-Hartmann sensor. In our approach
we use the filter functions derived from the forward mathematical models of the pyramid sensor. Moreover, our
approach is general, since it is suited for any modulation scenario and any amount of modulation applied.

4.2 Convolution with the Linearized Inverse Filter

Theorem 8. For any modulation scenario, the wavefront can be reconstructed from the discrete sensor data

S̄
{n,l,c}
x as

φrecx (x̄) =
(
S̄{n,l,c}x (·, y) ∗ p{n,l,c}(·)

)
(x̄), (21)

where the convolution kernel p is defined as

p{n,l,c}(x) :=
(
F−1h−1{n,l,c}

)
(x̄) (22)

=
[
F−1

(
g−1 · sinc−1

)]
(x)

=
[(
F−1g−1

)
(·) ∗

(
F−1sinc−1

)
(·)
]

(x).

Proof. The reconstruction formula (14) can be transformed to the spatial domain using the Fourier convo-
lution theorem as follows

φrecx (x, y) =
(
F−1(Fφ)

)
(x, y)

=
(
F−1

[(
F S̄{n,l,c}x

)
(ū, y) · h−1{n,l,c}(ū)

])
(x, y)

=
([
F−1

(
FS{n,l,c}x

)]
(·, y) ∗

[
F−1h−1{n,l,c}

]
(·, y)

)
(x, y)

=
(
S{n,l,c}x (·, y) ∗

(
F−1h−1{n,l,c}

)
(·)
)

(x, y), (23)

which finishes the proof. �



Figure 2 illustrates the spatial domain kernels p{n,l,c} for different modulation scenario with modulation
4λ/D.

Based on Theorem 8, the CLIF algorithm consists of the following three steps:

Algorithm 2: CLIF.

1. Computation of the 1D discrete spatial domain kernel p{n,l,c}(x̄) according to (22). This step has to be
performed only once for the chosen AO system and can be pre-computed before the AO loop starts.

2. Computation of two wavefronts {φrecx , φrecy } from two data sets {Sx, Sy} according to (21). The convolution
is performed row-wise for data Sx and column-wise for data Sy.

3. Averaging of the two reconstructed wavefronts.

5. SIMULATED CLOSED LOOP PERFORMANCE

To test the quality of our reconstruction method in a closed loop setting, we use the end-to-end simulator
OCTOPUS developed by the European Southern Observatory (ESO).8 The used simulation parameters are
summarized in Table 1.

We consider an XAO system with telescope diameter of D = 42 m and a pyramid sensor. The software
simulates a 9-layer atmospheric model, each layer being a random realization of the von Karman power spectrum.
We test the closed loop performance of our reconstruction method for a 200 × 200 pyramid sensor with the
modulation radius α = 4λ/D. The XAO system runs with the frame rate of 3 kHz. DM influence functions IF
of the form

IF (x, y) =
[
1− |x|3.805 + 3.74 ln |x| · |x|2.451] (24)

× [1− |y|3.805 + 3.74 ln |y| · |y|2.451
]

are assumed. Note that the form of the DM influence functions was predefined in our tests by the reference
results and reference parameters provided by ESO.

We evaluate the quality in a wide range of atmospheric conditions and photon flux levels as given in Table 1.
For the temporal control of the closed loop we use a simple integrator, the gain is optimized manually (on 100
time steps) with a resolution of 0.1. The results are obtained simulating 500 time steps. The quality metric
used is the Long-Exposure (LE) Strehl ratio, which is computed as the average on-axis Strehl ratio for all the
performed time steps.

Note that the less the photon flux is, the higher is the impact of the shot noise on the sensor data. It is clear
that the reconstruction from the data with more noise is less trustable than from the noiseless data. Therefore,
in the low flux case it makes sense to apply a smaller control gain. This allows to regularize (smoothen) the DM
shape. Hence, gain optimization has to be performed for each photon flux level (shot noise level, respectively)
separately.

We compare the quality of our CLIF/PFTR method with that of the P-CuReD algorithm, which were
reported in,3 and the MVM method, which were provided to us by ESO. Table 2 gives a comparison of the LE
Strehl ratios obtained with three methods for three ’ESO-standard atmospheres’ and varying photon flux. The
result obtained for the median atmosphere is visualized in Figure 3. It shows that, compared to both MVM and
P-CuReD, our CLIF/PFTR method achieves the slightly lower quality in the high photon flux case. However,
in case of low photon flux the quality of CLIF/PFTR is slightly lower than that of P-CuReD, but much higher
compared to MVM.

Note that the MVM results we present in the paper were provided to us by the ESO, as a benchmark for new
reconstruction methods. The MVM method which was used is modal reconstructor, using maximum a posteriori
(MAP) priors (von Karman covariance matrix), with a hyper-parameter tuning to account for the fact that
the atmospheric statistic are for open loop operation, whereas the system is used in closed loop. An interaction



Table 1: Simulation parameters.
telescope diameter D 42 m
central obstruction 28%
science target on-axis (SCAO)
science band K, λStrehl = 2200 nm
sensing band R, λWFS = 700 nm
WFS pyramid
type of modulation circular
controller integrator
atmospheric model von Karman
number of simulated layers 9
outer scale L0 25 m
Fried radius r0 at λ = 500 nm

for good atmosphere 0.172 m
for median atmosphere 0.129 m
for bad atmosphere 0.094 m

number of subapertures ns 200× 200 = 40000
number of active subapertures n 28800
number of DM actuators na 29618
frame rate 3 kHz
DM delay 1
photon flux [5, 10, 50, 100, 1000, 10000]
read noise 2.8 e−/pixel
modulation radius in λ/D 4
atmosphere [good, median, bad]
iterations per simulation 500
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Figure 3: Close loop performance of the CLIF algorithm in comparison with that of the MVM and P-CuReD
methods for the case of median atmospheric conditions and various photon fluxes.

matrix connects KarhunenLoève (KL) modes (as best approximated by the DM) to the measured sensor response.
With the regularized inverse of this matrix (control matrix) one reconstructs the actuator commands from the
measured sensor data. A single gain value was used for all KL modes. A single matrix was used for all fluxes in
the MVM case, just optimizing a single loop gain.



Table 2: Comparison of the LE Strehl ratios obtained with the MVM, the P-CuReD, and the CLIF
method for different atmospheres and photon fluxes using the indicated simulation parameters.

Atmosphere good median bad
Photon flux MVM P-CuReD CLIF MVM P-CuReD CLIF MVM P-CuReD CLIF
5 0.8709 0.9317 0.9209 0.7260 0.8969 0.8740 0.4355 0.8203 0.7766
10 0.9524 0.9582 0.9452 0.9261 0.9380 0.9183 0.8785 0.9006 0.8628
50 0.9742 0.9748 0.9616 0.9585 0.9607 0.9384 0.9260 0.9344 0.9021
100 0.9765 0.9766 0.9632 0.9621 0.9630 0.9399 0.9335 0.9378 0.9048
1000 0.9785 0.9780 0.9640 0.9651 0.9649 0.9408 0.9384 0.9405 0.9070
10000 0.9788 0.9781 0.9640 0.9654 0.9650 0.9408 0.9387 0.9408 0.9071

6. COMPUTATIONAL COMPLEXITY

In this Section we analyse and compare the properties of the CLIF/PFTR methods with the emphasis on their
computational complexities, and compare them to other existing algorithms, especially MVM, as listed in Tables 3
and 4.

The CLIF method consists in a row-wise convolution of the sensor data Sx and a column-wise convolution
of the sensor data Sy with a 1D kernel p. The obtained results are then averaged. The full kernel p consists
of
√
n points, where n denotes the number of wavefront sensor active subapertures. Hence, the CLIF method

requires 4n
√
n operations for the convolution, and n operations for the averaging, which makes together 4n

√
n+n

operations to be performed. Therefore, the complexity of the CLIF method scales as O(n3/2) with the number
n of active subapertures of the wavefront sensor, which is significantly more efficient compared to the MVM
method.

Moreover, as one can see from Figure 2, a lot of the kernel values are rather small, and therefore could be
neglected in the convolution. In this case a smaller number of operations would have to be performed. Our tests
in the XAO setting have showed that the method reaches the same correction quality if only 60% of the largest
kernel values are used. Note that for other settings this number could be different.

In the PFTR method the reconstruction is performed on the Fourier domain, and the computational com-
plexity is further reduced. First, one has to compute 1D Fourier transforms of the sensor data, which requires
O(n log n) operations in case the FFT algorithm is used. Then, multiplication of the sensor data spectra (FSx,y
with the inverse filter h−1n,l,c requires n operations. Further, computation of the inverse Fourier transform of
the filtered data spectra requires again O(n log n) operations. Finally, averaging of two reconstructions costs n
operations. Therefore, the total complexity of the Fourier domain reconstructor scales as O(n log n) with the
number of n of active subapertures of the wavefront sensor.

Thus, in comparison with the P-CuReD with the complexity O(n), and the MVM method with the complexity
O(n2), the CLIF/PFTR method takes up an intermediate position. In Table 3 we compare the number of
operations per frame required by various algorithms in the considered XAO setting. Here one can clearly see the
drastic reduction of computational load which the algorithms based on the mathematical forward model of the
sensor can achieve compared to the hardware-based MVM approach.

Table 3: Comparison of the number of operations per frame required required by different recon-
struction algorithms in the specific XAO setting considered in this paper.

Algorithm Number of operations
in XAO setting

MVM 4nan
∗ 3.4120e+09 100%

P-CuReD (4c− 2)n+ 20n∗ 1324800 0.0388%
CLIF 4n

√
n+ n 1.9579e+07 0.5738%

∗ na = 29618, n = 28800, c = 7

Additionally, in Table 4 we compare the computational complexities, applicability and achievable quality of
our two novel algorithms to other existing methods.



Table 4: Comparison of the currently existing algorithms for wavefront reconstruction from pyramid
sensor data in terms of their flexibility, computational complexity, need in time consuming fine
tuning when atmospheric conditions change, and the achieved closed loop performance.

Quality in end-to-end
Algorithm Modulation Complexity simulations in

no small large the XAO ELT setting∗

Matrix-Vector Multiplication (MVM) + + + O(n2) baseline
Fourier Transform Reconstructor (FTR) – – + O(n logn) ?, slightly lower for VLT∗

Preprocessed CuReD (P-CuReD)1,3 + + + O(n) same / higher in low flux

Conv. with Lin. Inverse Filter (CLIF)1,9 + + + O(n3/2) slightly lower / higher in low flux
Pyramid FTR (PFTR)9 + + + O(n logn) same as CLIF

Conj. Gradient for Normal Eq. (CGNE)1,10,11 (+) + + O(n3/2) work in progress
Hilbert Transform Rec. (HTR) + – – O(n logn) slightly lower

Finite Hilbert Transform Rec. (FHTR)1 + – – O(n3/2) work in progress

Singular Value Type Rec. (SVTR)12 + – – O(n3/2) same as CLIF

Pyramid Kaczmarz Iteration (PKI)10,11 + + + O(n3/2) same as / better than P-CuReD

* XAO ELT setting: D = 42m, nsub = 200 × 200, d = 0.21m
** VLT setting: D = 8m, nsub = 40 × 40, d = 0.5m

To summarize, the CLIF/PFTR method is general, parameter-free, highly parallelizable and significantly
faster than MVM. These features make our method especially attractive for usage in the real-time extreme
adaptive optics.

7. CONCLUSIONS

The new methods we introduced in this paper, CLIF and PFTR, can reconstruct the wavefront for both the
modulated and non-modulated pyramid-type sensor data.

The computational complexity of the method depends on the chosen implementation and the properties of
the spatial domain kernel, and can be scaled from O(n3/2) down to O(n log(n)), where n denotes the number of
active subapertures of the wavefront sensor. Therefore, with respect to the number of operations to be performed,
the CLIF/PFTR method occupies an intermediate position between the MVM (O(n2)) and the P-CuReD (O(n))
algorithms. Compared to the MVM method with the complexity of O(n2), our approach is significantly more
efficient.

From the closed loop quality tests, performed for various atmospheric conditions and photon fluxes, we have
seen that the quality of the CLIF method is slightly lower that the quality of the MVM and the P-CuReD
algorithms in the high flux case, and is much better than the quality of MVM in the low flux regime. We would
like to point out here, that the difference in the quality obtained with the CLIF/PFTR method compared to
the P-CuReD is rather small, therefore it is not clear if this feature will stay the same when the algorithms are
tested with real data on sky.

Analysis of the noise propagation properties of the algorithms and development of RTC prototypes for the
speed comparison to MVM are the points of our further research.
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