HARMONI PRELIMINARY DESIGN

Scientific impact of PSF knowledge for AO assisted spectrographs

Niranjan Thatte PI – HARMONI@ELT

(on behalf of HARMONI Science Team)

Science & Technology Facilities Council UK Astronomy Technology Centre

FORD

Durham University

UNIVERSITY OF

CENTRE DE RECHERCHE ASTROPHYSIQUE DE LYON

HARMONI – spatial setup

Science & Technology Facilities Council UK Astronomy Technology Centre LAM

ONERA

irap

IPAG

HARMONI spectral setup

Bands	Wavelengths (µm)	R
"V+R" or "I+z+J" or "H+K"	0.45-0.8, 0.8-1.35, 1.45-2.45	~3000
"l+z" or "J" or "H" or "K"	0.8-1.05, 1.05-1.35, 1.45-1.85, 1.95-2.45	~7500
"Z" or "J_high" or "H_high" or "K_high"	0.9, 1.2, 1.65, 2.2 (TBD)	~20000

+ES+

IPAG

HARMONI Adaptive Optics Flavours

LAM

ONERA

Oirap

ELT AO PSF varies strongly with λ

S. Zieleniewski et al. (MNRAS 2015)

0

IPAG

Titan at many wavelengths

Motivation for PSF reconstruction

- Create mock observations of sources with simulated PSF, using HSIM
- Analyse (noisy) data using Original PSF, and "wrong" PSFs, with different Strehl, jitter, and elongation.
- Quantify dependence of extracted parameters on PSF knowledge required accuracy

HARMONI Simulator Scheme

PSF effects

UK Astronomy Technology Centre

- Strong variation of PSF with wavelength
- Parameterize PSF (axisymmetric) with a few parameters, which vary smoothly with wavelength.
- Allows quick computation of PSF at any wavelength, with high accuracy.
- Extended to allow user defined PSF, interpolated in λ

Florence

Motivation for PSF reconstruction

- Create mock observations of sources with simulated PSF, using HSIM
- Analyse (noisy) data using Original PSF, and "wrong" PSFs, with different Strehl, jitter, and elongation.
- Quantify dependence of extracted parameters on PSF knowledge required accuracy

PSFs used in simulations

PSF name	LGS asterism diam.	Residual jitter	Orientation
Original	2.2 arcmin	3 mas rms	N/A
New_PSF1	1 arcmin	2 mas rms	N/A
New_PSF2	1 arcmin	4 mas rms	N/A
New_PSF3	1 arcmin	4 mas × 2 mas rms	45 degrees
New_PSF4	1 arcmin	4 mas × 2 mas rms	0 degrees

Motivation for PSF reconstruction

- Create mock observations of sources with simulated PSF, using HSIM
- Analyse (noisy) data using Original PSF, and "wrong" PSFs, with different Strehl, jitter, and elongation.
- Quantify dependence of extracted parameters on PSF knowledge required accuracy

ONERA

Study three science cases

- Effective radius of high-z star forming galaxy (with S. Kendrew, B. Haußler, M. Richardson)
- Rotation curves of high-z galaxies (long slit and IFS) (with L. Routledge, M. Richardson, M. Pereira)
- Stellar kinematic signatures of intermediate mass black holes in nuclear stellar clusters (with T. Yasin, R. Houghton, J. Magorrian)

ONERA

NUTFB simulation@ z=3

- Zoom-in sim from the NUT suite (Powell+ 2011; Kimm + 2011) using RAMSES (Teyssier 02)
- Terminates @ z=3 (@ ~2.2 Gyr), physical spatial resolution of 12 pc

IPAG

Oirap

Every star particle represents a simple stellar population (SSP)

Stars

Compare star formation history deduced from fit to absorption line spectra with input

Compare observed metallicity & gradients with intrinsic ones

Use stellar kinematics to infer a dynamical mass, and compare with DM and baryonic mass

Look at dependence of observed features on IMF, to determine diagnostics

Important to disentangle PSF effects!

S. Kendrew et al. (2016)

Effective radius of the galaxy

Galaxy 1: faint, almost round, R_eff (actual) = 40 mas (0.3 kpc at z = 3) Observed (with no PSF effect taken into account): R_eff = 140 mas

Galaxy 2: brighter, not round

PSF used	R_eff (PSF deconvolved)
original	85.8 ± 0.6 mas
Higher Strehl, round (2mas rms jitter)	189.2 ± 1.2 mas
Higher Strehl, elongated, rotated (4 x 2 mas)	189.4 ± 1.2mas

Study three science cases

- Effective radius of high-z star forming galaxy (with S. Kendrew, B. Haußler, M. Richardson)
- Rotation curves of high-z galaxies (long slit and IFS) (with L. Routledge, M. Richardson, M. Pereira)
- Stellar kinematic signatures of intermediate mass black holes in nuclear stellar clusters (with T. Yasin, R. Houghton, J. Magorrian)

Gas kinematics at z = 1.44

Velocity fields & warps

1'-4x2mas-45

1'-4x2mas-0

Input cube

2.2'-3mas-0 (original)

Extracted rotation curves Radius (")

+ES+ O

IPAG

Oirap

Study three science cases

- Effective radius of high-z star forming galaxy (with S. Kendrew, B. Haußler, M. Richardson,
- Rotation curves of high-z galaxies (long slit and IFS) (with L. Routledge, M. Richardson, M. Pereira)
- Stellar kinematic signatures of intermediate mass black holes in nuclear stellar clusters (with T. Yasin, R. Houghton, J. Magorrian)

Plummer model of NSC

- Observed at 4 mas spaxels
- 900s × 40 (5 hours)
- LTAO PSF
- K band (2.25 μm, single abs. line)
- R = 7500
- 0.7" seeing, 10 deg ZD
- R_h= 3.5 pc
- 10 Mpc distance
- M_{BH}/M_{NSC} = 0.1

Jurham |

• M/L = 1

Fit using forward modelling

ES+ O

Impact of PSF knowledge

!! Work in progress !!

ONERA

<u>دع</u>

IPAG

Irap

PSF effects ☞ "Fake News"

The Donald will be happy!

IPAG

⊦ES+ ©