

INSTITUTO DE ASTROFÍSICA DE CANARIAS

Non-common Path Aberration Compensation Using the NWIWM Method

Luis Fernando Rodríguez Ramos

Javier López, Oscar Tubío, Carlos Colodro, Miguel Núñez, José Marco

Luis Fernando Rodríguez Ramos Instituto de Astrofísica de Canarias

Contents

- Non-Common Path Aberrations (NCPA)
- NCPA compensation as an optimization problem
- Algorithm description
- Simulation results
- Laboratory tests
- Execution time estimation
- Future

A number of [iterative] solutions...

Phase diversity
 Gerchberg–Saxton

Focal plane sharpening NWIWM: Noise Weighted Image Width Minimization

Encircled energy, scalar function of all (N) actuators:

$$EE(a_1, a_2, \dots a_N) = \sum_{r} p$$

$$p = \text{pixel value}$$

$$r = \text{radius}$$

…Extremely simple. More complex functions might also be used, like distance weighted, correlations, trying to exploit the a priori existing knowledge of the diffraction shape.

Some pre-processing always required:

Bias

Flat

Bad pixel removal

(Threshold)

≻ ...

> AVERAGING

NWIWM Algorithm

Keep it simple: "Steepest ascent to the EE peak"

Key concepts

Actuations for gradient measurement is adjusted using S/N values.

New position is found using S/N information.

No knowledge required about DM

No WFS required

Real example:

Starting image Zero actuation AOLI Science Camera (241 actuators DM)

J Figure 1	- 🗆 ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>I</u> nsert <u>T</u> ools <u>D</u> esktop <u>W</u> indow <u>H</u> elp	لا ا
11 🖆 🛃 🌭 🗞 🍳 🧐 🐙 🔏 - 🔜 🗖 🖽 🔲	

_	_
1	
	- 1
	_

~						E	igure i			
<u>F</u> ile	<u>E</u> dit	View	<u>I</u> nsert	Tools	<u>D</u> esktop	<u>W</u> indow	<u>H</u> elp			
né				9 m	19 🖓 🖉					

It=2

Simulation results

> OOMAO (C. Correia, R. Conan)

- MATLAB based
- Object oriented
- Open source
- Easy to use

Main parameters

- 97 actuators
- Readout noise = 20 e⁻
- NCPA 200 Zernikes
- Random amplitudes related to order number
- Starting delta = 2 microns
- EE radius = 4 pixels
- Averages = 9
- Target S/N = 3

Laboratory Results

EDiFiSE (Equalized and Diffraction-limited field spectrograph experiment)

- Prototype for AO + fibre optic equalised IFU + spectrograph
- 97 actuators ALPAO DM + Physik Instrumente Tip-tilt mirror
- 500 frames/second, 16x16 SH WFS (not used for NWIWM)
- FPGA-based RTC controller (only used to command DM)
- PULNIX 6740 science camera simulator, 7.4 µm pixel
- Narrow band I filter

After 25 iterations:

Main drawbacks:

- Convergence slows near the peak
- Detector dynamic range
- Total measuring time

Execution time estimation for:

- . 40 iterations
- .9 averages
- . 3 exposures for DM stabilization
- . 500 images/sec

	OGS	WHT	GTC	ELT
size (m)	1	4,2	10	39
Estimated Number of actuators	97	241	373	5000
Exposures per iteration	2733	6189	9357	120405
Total (secs)	219	495	749	9632
Total (mins)	4	8	12	161

Future

Extended simulations.

Target S/N, seek length, number of actuators...

Algorithm improvement.

Conjugated gradients, correlation, distance weighted energy,...

- Comparison with other algorithms
 - Phase diversity...
- Extended laboratory tests

Possible use in EDIFISE, AOLI, GTCAO...others?

On sky NWIWM

Directly using bright stars to evaluate PSF, by Lucky Imaging, Speckle Reconstruction,...

Thanks!