

Point Source sensitivity, Pupil alignment, Calibration and Control for TMT-NFIRAOS-IRIS

Glen Herriot¹

Jean-Pierre Véran¹, Ryuji Suzuki², Gelys Trancho³

¹National Research Council Canada, ²NAOJ, ³TMT

A04ELT5 June 2017

Sensitivity for background limited point sources

D⁴ advantage of an ELT (with perfect AO)

- Area Telescope ~ D²
- 1/Area of Point Spread Function ~ D²
- Degraded by
 - Wavefront Error ~ S²
 - Optical Throughput
 - Thermal Background
 - = Function of temperature, emissivity
 - Etc.

Point Source Sensitivity

Inverse of observing time.

• PSS
$$\propto \frac{A}{f_{bg}} \int \varphi_{(\theta)}^2 d\Omega$$

• $\varphi_{(\theta)}$ is 2D PSF profile normalized so $\int \varphi_{(\theta)} d\Omega = 1$

- A is telescope aperture area
- *f_{bg}* is a photon flux of background per unit area, unit time, and unit solid angle

Point Source Sensitivity - Normalized

- PSSN = $\frac{A}{A_0} \times \frac{f_{bg0}}{f_{bg}} \times \frac{\int \varphi_{(\theta)}^2 d\Omega}{\int \varphi_{0(\theta)}^2 d\Omega} \times \cdots$
- PSS Normalized to a reference case.
 - A₀ telescope aperture as designed, unvignetted by Lyot stop
 - *f*_{bg0} telescope background with a perfectly aligned and sized Lyot stop
 - $\varphi_{0(\theta)}$ diffraction limited PSF

Existing PSSN Budget

	On Ax	is PSS	N Budget	
Item	K			
PSSN MCAO NFIRAOS + IRIS Imager	0.123			
Wavefront Error (PSS \propto S ²)		0.592		
High Order WFE in nm -> S^2			0.617	172 nm
Lo Order WFE broadening PSF -> S			0.960	71 nm
Throughput (PSS ∝ η)		0.328		
Telescope Requirement			0.910	
NFIRAOS Requirement			0.800	
IRIS Imager Requirement			0.450	Reducing this 30% Loss of
Pupil Shift (1% Undersized Lvot		0.702		
Loss of pupil area			0.887	Observing time is the motivation
Undersized Lyot mask PSF broadening			0.791	for this talk
Background [PSS ∝ (1+l _b /l ₀) ⁻¹]		0.958		
Thermal Background			0.960	NFIRAOS Cooled to - 30 C
Scattered Light			0.999	
Out of focus ghosts			0.999	
Image Smearing (PSS \propto S)		0.950		0.5mas allocation
Image derotator				
Offset b/w OIWFS/IRIS Focal plane				
ADC errors				
Amplitude non-uniformities		0.994		
Atmospheric scintillation			0.994	
M1 segments T.P variation			0.9998	0.93+/-0.03
Ghosting (PSS \propto 1-2 ϵ)		0.999		
Static focused ghost			<5 x 10 ⁻⁴	

Pupil Alignment The over-looked tall pole:

- 1% end-to-end pupil misalignment causes:
- 30% observing time penalty!!
 - If Telescope pupil is misaligned onto IRIS Lyot stop due to tolerances
 - Then Lyot stop should be undersized to block background

IRIS is the first light Imaging Spectrograph for TMT.

Lyot Mask Undersizing - Loss of throughput

- Lyot stop defined by undersizing factor $\alpha = 2 \times \text{shift}$
 - fraction of the telescope pupil diameter D_{M1} .
- All interior edges intrude into aperture
 - Serrated outer perimeter is shrunk by αD_{M1}
 - Central obscuration is enlarged by αD_{M1}
 - The M2 spider widths are thickened by αD_{M1}

TMT.AOS.PRE.17.088.REL01

 $\alpha = 0.02$ causes 11% loss of Area!

Lyot Stop Undersizing -PSF Broadening

- Smaller, less-filled pupil Mask for 1% misaligment, causes 21% decreased PSSN
- Because S² declines rapidly with broader PSF.
- PSF $\varphi_{\left(\vec{\theta}\right)}$ is squared absolute value of the Fourier transform of pupil function $P_{tel\left(\vec{\rho}\right)}$,
 - Vignetted by Lyot Stop $T_{LS(\vec{\rho},\alpha,\beta)}$; (β is as-built pupil shift)

•
$$\varphi_{\left(\vec{\theta}\right)} = \left| \operatorname{FT} \left[\frac{P_{tel(\vec{\rho})} T_{LS(\vec{\rho},\alpha,\beta)}}{\int P_{tel(\vec{\rho})} T_{LS(\vec{\rho},\alpha,\beta)} d\vec{\rho}} \right] \right|^2$$

$$\label{eq:alpha} \begin{split} \alpha &= 0.02 \text{ causes} \\ & 21\% \text{ loss from} \\ \text{PSF broadening} \\ & \text{alone!} \end{split}$$

PSSN loss versus Lyot stop undersizing

- A decade ago we decided to do "twice as good as Gemini for Lyot masks undersizing." So we picked +/- 1% for pupil misalignment
- It is challenging for the Telescope to steer its pupil accurately onto DM0 within NFIRAOS.
- NFIRAOS has a goal to work with D/240 pupil shift on DM0 -- causes tomography errors.
- NFIRAOS wavefront error budget allocates 27 nm for tomography effects due to pupil shift

Three related budgets

Pupil Position on Lyot mask - shift in % Dia.	Allocate Proposed					PSSN Budget On-axis Kband	
Telescope to DMO	±1% Dia.				>	Lyot Mask 1% Radius Undersizing -	0.887
lelescope to bivio	1/240			_		throughput losses	
Errors in Feedback to TCS from NFIRAOS due	0.2	Maak	Doguinad	CRE		Lyot Mask Undersizing PSF broadening losses	0.791
to segment exchange		Undersize	(Proposed)	C.B.E		Thermal Background at	0.96
Other errors in pupil	0.365	(% radius)	1% Radius	1.3%		-30 C	
onto DM0						NFIRAOS throughput	0.8
Delivered pupil w.r.t.	1/300	Position	1%	1%		IRIS throughput	0.45
		IRIS pupil		0.2		Etc.	
IRIS Lyot mask position	1/300	aberrations					>
w.r.t. NFIRAOS interface.		Rotator bearing Runout	(55 μ Rad)	0.08			_

TMT.AOS.TEC.15.103.DRF01

Pupil and Image rotation

NFIRAOS Optical Block Diagram

Science Path is blue horizontal line

NFIRAOS Opto-mechanics

Canada NAC·CNAC

Pupil Feedback to Telescope Control System (TCS)

 On-sky, NFIRAOS will feed back to the telescope control system:

- Image position
- Quasi-static wavefront error
- Pupil shift error signals

Figure: Control Architecture for adaptive optics observations

 TCS will adjust the alignment of TMT's three mirrors

NFIRAOS Pyramid WFS Visible-Light Natural Guide Star

- Calibrated in daytime via Focal Plane Pinhole mask and DM0 actuator pokes.
- Pointing Model for 7 motors (XYZTT +ADC)
- Zero point of pupil images on CCD verified by actuator pokes in afternoon
- PWFS then is pupil reference for telescope feedback on-sky

TMT Pupils: full resolution and 24x24 binning on PWFS

Matched filters

Circular matched filter is OKAY Canada

TMT.AOS.PRE.17.088.REL01

19

Results

- In dark time (no Moon), background light is 10x lower and with matched filters, the pupil position estimation error increases from ~0.010% RMS to ~0.022% RMS
 - Error due to M1 segment reflectivity non-uniformity remains at ~0.005% RMS
- Using an annular matched filters that ignores the spiders only increases pupil estimation error from ~0.022% RMS to ~0.028% RMS
 - Error due to segment reflectivity non-uniformity reduces to ~0.004% RMS

New M1-DM0 pupil position Canada error breakdown

116	M1- DM0 pupil position		0.417%	Budget =	1/240 of pup	oil diameter						
117												
118												
119	Pupil position estimation error		0.010%	Based on	simulations	of how well	pupil positio	on can be de	termined on	the PWFS		
120	M3 pointing error		0.002%	How well	M3 can repo	oint (see sec	tion 4.2 of T	MT.AOS.TEC	.15.103.DRF	01)		
	Sensitivity of pupil steering mirror(%D /											
121	mrad of mechanical motion)	2.985%										
122	Angular resolution of motors (urad)	10	0.030%	NFIRAOS	oupil centeri	ng mirror re	quriement					
123	Repeatability of motors (urad)	20	0.060%	NFIRAOS	oupil centeri	ng mirror re	quriement					
124	Accuracy of motors (urad)	40	0.119%	NFIRAOS	oupil centeri	ng mirror re	quriement.	Must be no i	more than ~	0.1pix no to	lose to muc	h flux:
125	Poiniting model error		0.050%	Ability to	build a mode	el						
126	Non-uniformity of M1 segment reflectivity		0.005%	Due to re	coating sche	dule						
127												
128												
129												
130	RSS (yellow and orange terms)		0.146%									
131	Sum (yellow and orange terms)		0.276%									
132	RSS (orange terms)		0.032%									
133	Sum (yellow terms)		0.234%									
134	RSS (orange terms) + Sum (yellow terms)		0.329%									

Instrument alignment features at interface

Stages and Cameras in NSEN (NFIRAOS Sensors)

Cameras & WFS inside NSEN

TMT.AOS.PRE.17.088.REL01

Canada

NRC·CNRC

NSEN Maps focal plane bowl and location of central pinhole

- C is the XYZ centre of curvature of the focal plane
- C should have same XY coordinates as A
- A is the measured XYZ location of central pinhole image

Delivered focal plane position and Canada NRC·CNRC tilt

Image is centred, but pupil is offcentre

translated repointed and shimmed

Alignment tolerance Delivered focal plane w.r.t. interface to instruments

NSEN FOCAL Plane reference sources

• View looking towards NFIRAOS from NSEN WFS.

NSEN Stage Runout

- Deviation varies from unit to unit with somewhat random shapes.
- Unmounted/unloaded values are typically <100 µrad
- Each stage deviation is very repeatable (<5 μrad)

DMs conjugation & parallax

Canada Mac. CMac

100

30

Considered CA (mm)	300	366
Exit diameter (mm)	14939	1487
Exit distance (mm)	-224085	+18575
Relative dia. on HASO	1	1.2
Parallax @+130mm (mrad) (% of dia.) (actu pitch)	0.58 0.87 0.523	-7.00 -8.7 -6.374
Sensitivity (mrad/actu)	1.11	1.10

- DM0 and DM11 shift in opposite directions
 - DM11 blurring is 13% of actu pitch if no field lens (f=-17.153m)

Worst case 1-period sine wave (i.e. smallest slope) TMT.AOS.PRE.17.088.REL01

Field position (mm)

50

0

IRIS (Imaging Spectrograph)

Prototype IRIS Cold Stop XY & Rotate Stage

What does IRIS pupil viewing camera see during calibration?

- Must calibrate pupil alignment and wander on IRIS
 Lyot mask during the daytime
 - Derive XY & Rotation pointing model for IRIS pupil mask
 - As a function of Dewar rotation in situ installed on NFIRAOS

Poke Waffle on high-altitude DM11

What does Pupil Viewing Camera see?

- 1.5 µm P-V waffle, H-band → +225% / -75% intensity modulation at pupil imager
- Measure location to <<0.1% of pupil diameter via correlation

Ideas to improve PSS errors due to Canada pupil position

- Verify DM0 to PWFS by poking DM actuators in daytime
- 2. Record zero-point on CCD
- 3. Use matched filters to measure pupil during observation
- 4. Feed back errors to telescope
- Jointly calibrate DM0 to Interface, and Interface to Lyot stop using IRIS Pupil viewing camera
- 6. Move Lyot stop in XY as instrument rotates
- PSSN due to pupil alignment & Lyot stop undersizing expected to improve by ~3x, resulting in 10% loss

	On Ax	is PSS	N Budget
Item		Κ	
PSSN MCAO NFIRAOS + IRIS Imager	0.157		
Wavefront Error (PSS \propto S ²)		0.592	
High Order WFE in nm -> S^2			0.617
Lo Order WFE broadening PSF -> S			0.960
Throughput (PSS ∝ η)		0.328	
Telescope Requirement			0.910
NFIRAOS Requirement			0.800
IRIS Imager Requirement			0.450
Pupil Shift (1/3% Undersized Lvot		0.896	
Loss of pupil area			0.962
Undersized Lyot mask PSF broadening	L		0.930
Background [PSS \propto (1+ I_b/I_0) ⁻¹]		0.958	
Thermal Background			0.960
Scattered Light			0.999
Out of focus ghosts			0.999
Image Smearing (PSS ∝ S)		0.950	
Image derotator			
Offset b/w OIWFS/IRIS Focal plane			
ADC errors			
Amplitude non-uniformities		0.994	
Atmospheric scintillation			0.994
M1 segments T.P variation			0.9998
Example 1.1 Ghosting (PSS \propto 1-2 ϵ)		0.999	
Static focused ghost			<5 x 10 ⁻⁴